3.1. Bounded maps to Banach space \mathbb{E}. Let M be a set and let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. Then show that the set of bounded maps

$$
B(M, X):=\left\{f: M \rightarrow X \mid \sup _{m \in M}\|f(m)\|_{X}<\infty\right\}
$$

endowed with the norm

$$
|f|=\sup _{m \in M}\|f(m)\|_{X}
$$

(as defined in class) is itself a Banach space.
3.2. Normal convergence . Let $(X,\|\cdot\|)$ be a normed vector space. Prove that the following statements are equivalent.
(i) $(X,\|\cdot\|)$ is a Banach space.
(ii) For every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X with $\sum_{k=1}^{\infty}\left\|x_{n}\right\|<\infty$, the limit $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} x_{n}$ exists.

Hint. A Cauchy sequence converges if and only if it has a convergent subsequence.
3.3. Subsets with compact boundary normed vector space and let $Z \subset X$ be a bounded subset with compact boundary. Prove that Z has empty interior, i.e., $Z^{\circ}=\emptyset$.

Hint. Assume that $Z^{\circ} \neq \emptyset$. Find a continuous map that projects the boundary ∂Z to the boundary of a ball inside Z. This will contradict the fact that the unit sphere in an infinite-dimensional normed space is non-compact.

3.4. Topological complement

Definition. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. A subspace $U \subset X$ is called topologically complemented if there is a subspace $V \subset X$ such that the linear map I given by

$$
\begin{aligned}
I:\left(U \times V,\|\cdot\|_{U \times V}\right) & \rightarrow\left(X,\|\cdot\|_{X}\right), \quad\|(u, v)\|_{U \times V}:=\|u\|_{X}+\|v\|_{X}, \\
(u, v) & \mapsto u+v
\end{aligned}
$$

is a continuous isomorphism of normed spaces with continuous inverse. In this case V is said to be a topological complement of U.
(i) Prove that $U \subset X$ is topologically complemented if and only if there exists a continuous linear map $P: X \rightarrow X$ with $P \circ P=P$ and image $P(X)=U$.
(ii) Show that a topologically complemented subspace must be closed.
3.5. Closed subspaces $\%$. Show that the subspaces

$$
\begin{aligned}
& U=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} \mid \forall n \in \mathbb{N}: x_{2 n}=0\right\}, \\
& V=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} \mid \forall n \in \mathbb{N}: x_{2 n-1}=n x_{2 n}\right\}
\end{aligned}
$$

are both closed in $\left(\ell^{1},\|\cdot\|_{\ell^{1}}\right)$ while the subspace $U \oplus V$ is not closed in $\left(\ell^{1},\|\cdot\|_{\ell^{1}}\right)$.
Hint. Prove that if any sequence $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ of elements $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in \ell^{1}$ converges to $\left(x_{n}\right)_{n \in \mathbb{N}}$ in ℓ^{1} for $k \rightarrow \infty$, then each entry $x_{n}^{(k)}$ converges in \mathbb{R} to x_{n} for $k \rightarrow \infty$. For the second claim, show $c_{c} \subset U \oplus V$. (Recall c_{c} from Problem 2.4.)

3. Solutions

Solution of 3.1: We need to check that $B(M, X)$ is complete with respect to the topology induced by the norm $|\cdot|$. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a Cauchy sequence, i.e., for every $\varepsilon>0$ there exists $K \in \mathbb{N}$ such that $\left|f_{k}-f_{h}\right| \leq \varepsilon$ for all $k, h \geq K$. Then note that the sequence $\left(f_{k}(m)\right)_{k \in \mathbb{N}}$ is Cauchy in $\left(X,\|\cdot\|_{X}\right)$ for all $m \in M$, since $\left|f_{k}(m)-f_{h}(m)\right| \leq \sup _{n \in M}\left\|f_{k}(n)-f_{h}(n)\right\|_{X}=$ $\left|f_{k}-f_{h}\right|$. Hence we can define a function $f: M \rightarrow X$ as the pointwise limit of the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$, namely $f(m):=\lim _{k \rightarrow \infty} f_{k}(m)$, which exists for all $m \in M$ because $\left(f_{k}(m)\right)_{k \in \mathbb{N}}$ is Cauchy in the Banach space $\left(X,\|\cdot\|_{X}\right)$.

Finally we need to show that $f \in B(M, X)$ and that the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ converges to f with respect to the norm $|\cdot|$. To this purpose, fixed any $\varepsilon>0$, observe that there exists $K \in \mathbb{N}$ with

$$
\left|f_{k}-f_{h}\right| \leq \varepsilon \forall k, h \geq K \Longrightarrow\left\|f_{k}(m)-f_{h}(m)\right\|_{X} \leq \varepsilon \forall k, h \geq K \forall m \in M .
$$

Letting $h \rightarrow \infty$, this implies

$$
\left\|f(m)-f_{k}(m)\right\|_{X} \leq \varepsilon \forall k \geq K \forall m \in M \Longrightarrow\left|f-f_{k}\right| \leq \varepsilon \forall k \geq K
$$

which proves that $\left(f_{k}\right)_{k \in \mathbb{N}}$ converges to $f \in B(M, X)$.

Solution of 3.2: If $(X,\|\cdot\|)$ is a Banach space, and $\left(x_{k}\right)_{k \in \mathbb{N}}$ any sequence in X with $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$, then $\left(s_{n}\right)_{n \in \mathbb{N}}$ given by $s_{n}=\sum_{k=1}^{n} x_{k}$ is a Cauchy sequence (and hence convergent) since by assumption, every $\varepsilon>0$ allows $N_{\varepsilon} \in \mathbb{N}$ such that for every $m \geq n \geq$ N_{ε},

$$
\left\|s_{m}-s_{n}\right\| \leq \sum_{k=n+1}^{m}\left\|x_{k}\right\| \leq \sum_{k=N_{\varepsilon}+1}^{\infty}\left\|x_{k}\right\|<\varepsilon
$$

Conversely, we assume for every sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X that $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$ implies convergence of $s_{n}=\sum_{k=1}^{n} x_{k}$ in X for $n \rightarrow \infty$. Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy in X. Then,

$$
\forall k \in \mathbb{N} \quad \exists N_{k} \in \mathbb{N} \quad \forall n, m \geq N_{k}: \quad\left\|y_{n}-y_{m}\right\| \leq 2^{-k}
$$

Without loss of generality, we can assume $N_{k+1}>N_{k}$. Let $x_{k}:=y_{N_{k+1}}-y_{N_{k}}$. Then,

$$
\sum_{k=1}^{\infty}\left\|x_{k}\right\|=\sum_{k=1}^{\infty}\left\|y_{N_{k+1}}-y_{N_{k}}\right\| \leq \sum_{k=1}^{\infty} 2^{-k}<\infty
$$

which by assumption implies that

$$
s_{n}=\sum_{k=1}^{n} x_{k}=\sum_{k=1}^{n}\left(y_{N_{k+1}}-y_{N_{k}}\right)=y_{N_{n+1}}-y_{N_{1}}
$$

converges in X for $n \rightarrow \infty$. Hence, $\left(y_{N_{n}}\right)_{n \in \mathbb{N}}$ is a convergent subsequence of $\left(y_{n}\right)_{n \in \mathbb{N}}$. Since $\left(y_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, it converges to the same limit in X. Thus, X is complete.

Solution of 3.3: If $Z \subset X$ has non-empty interior $Z^{\circ} \neq \emptyset$, then there exists $z \in Z$ and $\varepsilon>0$ such that $B_{\varepsilon}(z) \subset Z^{\circ}$, where $B_{\varepsilon}(z)$ denotes the ball of radius ε around z in $(X,\|\cdot\|)$ and $\partial B_{\varepsilon}(z)$ its boundary. We consider the projection

$$
\begin{aligned}
P: Z \backslash\{z\} & \rightarrow \partial B_{\varepsilon}(z) \\
x & \mapsto z+\varepsilon \frac{x-z}{\|x-z\|} .
\end{aligned}
$$

For every $y \in \partial B_{\varepsilon}$ the ray $\gamma=\{z+t(y-z) \mid t>0\}$ must intersect ∂Z since Z is assumed to be bounded. Therefore, $P(\partial Z)=\partial B_{\varepsilon}(z)$. Being continuous, P maps compact sets onto compact sets. Since ∂Z is assumed to be compact, we have that the sphere $\partial B_{\varepsilon}(z)$ is compact. This however contradicts the assumption that the dimension of X is infinite.

Solution of 3.4:

(i) Suppose, $U \subset X$ is topologically complemented by $V \subset X$. Then, $I: U \times V \rightarrow X$ with $(u, v) \mapsto u+v$ is a continuous isomorphism with continuous inverse. We define

$$
\begin{aligned}
P_{1}: U \times V & \rightarrow U \times V, \\
(u, v) & \mapsto(u, 0)
\end{aligned} \quad P:=I \circ P_{1} \circ I^{-1}: X \rightarrow X .
$$

The map P_{1} is linear, bounded since $\left\|P_{1}(u, v)\right\|_{U \times V}=\|u\|_{U} \leq\|(u, v)\|_{U \times V}$ and hence continuous. As composition of linear continuous maps, P is linear and continuous. Moreover,

$$
\begin{aligned}
& P \circ P=\left(I \circ P_{1} \circ I^{-1}\right) \circ\left(I \circ P_{1} \circ I^{-1}\right)=I \circ P_{1} \circ P_{1} \circ I^{-1}=I \circ P_{1} \circ I^{-1}=P, \\
& P(X)=I(U \times\{0\})=U .
\end{aligned}
$$

Conversely, suppose $U \subset X$ allows a continuous linear map $P: X \rightarrow X$ with $P \circ P=P$ and $P(X)=U$. Let $V:=\operatorname{ker}(P)$. Then

$$
\begin{equation*}
P \circ(1-P)=P-P=0 \quad \Rightarrow(1-P)(X) \subseteq \operatorname{ker}(P)=V \tag{1}
\end{equation*}
$$

In fact, $(1-P)(X)=V$ since given $v \in V$ we have $v=(1-P) v$. Analogously,

$$
\begin{equation*}
(1-P) \circ P=P-P=0 \quad \Rightarrow U=P(X) \subseteq \operatorname{ker}(1-P) \tag{2}
\end{equation*}
$$

In fact, $U=\operatorname{ker}(1-P)$ since $x-P x=0$ implies $x=P x \in U$. The claim is, that

$$
\begin{aligned}
I: U \times V & \rightarrow X \\
(u, v) & \mapsto u+v
\end{aligned}
$$

is continuous and has a continuous inverse. The continuity of I follows directly from

$$
\|I(u, v)\|_{X}=\|u+v\|_{X} \leq\|u\|_{X}+\|v\|_{X}=\|(u, v)\|_{U \times V} .
$$

By the assumptions on P, in particular by (1), the map

$$
\begin{aligned}
\Phi: X & \rightarrow U \times V \\
x & \mapsto(P x,(1-P) x)
\end{aligned}
$$

is well-defined and continuous. Since $P u=u$ for all $u \in U$ by (2), we have

$$
\begin{aligned}
(\Phi \circ I)(u, v) & =\Phi(u+v)=(P u+P v, u-P u+v-P v)=(u, v) . \\
(I \circ \Phi)(x) & =I(P x,(1-P) x)=P x+(1-P) x=x
\end{aligned}
$$

which implies that Φ is inverse to I. Consequently, U is topologically complemented.
(ii) If $U \subset X$ is topologically complemented, then (i) implies existence of a continuous map $P: X \rightarrow X$ with $\operatorname{ker}(1-P)=U$. Thus, U must be closed as the kernel of the continuous map $1-P$.

Remark. If X is not isomorphic to a Hilbert space, then X has closed subspaces which are not topologically complemented (see [Lindenstrauss \& Tzafriri. On the complemented subspaces problem. (1971)]). An example is $c_{0} \subset \ell^{\infty}$ but this is not easy to prove.

Solution of 3.5:

Claim 1. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence of sequences $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in \ell^{1}$ and let $x=$ $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$. Then, the following implication is true.

$$
\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|_{\ell^{1}}=0 \quad \Rightarrow \forall n \in \mathbb{N}: \lim _{k \rightarrow \infty}\left|x_{n}^{(k)}-x_{n}\right|=0
$$

Proof. Let $\varepsilon>0$ and $n \in \mathbb{N}$. By assumption, there exists $K_{\varepsilon} \in \mathbb{N}$ such that

$$
\forall k \geq K_{\varepsilon}: \quad\left|x_{n}^{(k)}-x_{n}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}^{(k)}-x_{n}\right|=\left\|x^{(k)}-x\right\|_{\ell^{1}}<\varepsilon .
$$

Claim 2. $U=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} \mid \forall n \in \mathbb{N}: x_{2 n}=0\right\}$ is closed in $\left(\ell^{1},\|\cdot\|_{\ell^{1}}\right)$.
Proof. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence of sequences $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in U$ converging to $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ in ℓ^{1}. By definition, $x_{2 n}^{(k)}=0$ for every $n \in \mathbb{N}$. According to Claim 1,

$$
x_{2 n}=\lim _{k \rightarrow \infty} x_{2 n}^{(k)}=0
$$

for every $n \in \mathbb{N}$. Thus, $x \in U$.
Claim 3. $V=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} \mid \forall n \in \mathbb{N}: x_{2 n-1}=n x_{2 n}\right\}$ is closed in $\left(\ell^{1},\|\cdot\|_{\ell^{1}}\right)$.

Proof. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence of sequences $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in V$ converging to $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ in ℓ^{1}. By definition, $x_{2 n-1}^{(k)}=n x_{2 n}^{(k)}$ for every $n \in \mathbb{N}$. By Claim 1,

$$
x_{2 n-1}=\lim _{k \rightarrow \infty} x_{2 n-1}^{(k)}=\lim _{k \rightarrow \infty} n x_{2 n}^{(k)}=n x_{2 n}
$$

for every $n \in \mathbb{N}$. Thus, $x \in V$.
Claim 4. $c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\} \subset U \oplus V$.
Proof. Let $x \in c_{c}$. Then, $x=u+v$ with $u=\left(u_{m}\right)_{m \in \mathbb{N}}$ and $v=\left(v_{m}\right)_{m \in \mathbb{N}}$ given by

$$
u_{m}=\left\{\begin{array}{ll}
x_{m}-n x_{m+1}, & \text { if } m=2 n-1, \\
0, & \text { if } m \text { is even }
\end{array} \quad v_{m}= \begin{cases}n x_{m+1}, & \text { if } m=2 n-1, \\
x_{m}, & \text { if } m \text { is even }\end{cases}\right.
$$

The assumption $x \in c_{c}$ implies $u, v \in c_{c} \subset \ell^{1}$. Then, $u \in U$ holds by construction and $v \in V$ follows from $v_{2 n-1}=n x_{2 n-1+1}=n x_{2 n}=n v_{2 n}$ for every $n \in \mathbb{N}$.

Claim 5. The space c_{c} is dense in $\left(\ell^{1},\|\cdot\|_{\ell^{1}}\right)$.
Proof. Let $x \in \ell^{1}$. Let $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ be given by

$$
x_{n}^{(k)}= \begin{cases}x_{n} & \text { for } n<k, \\ 0 & \text { for } n \geq k\end{cases}
$$

Then,

$$
\left\|x^{(k)}-x\right\|_{\ell^{1}}=\sum_{n=k}^{\infty}\left|x_{n}\right| \xrightarrow{k \rightarrow \infty} 0 .
$$

Claim 6. The sequence $x=\left(x_{m}\right)_{m \in \mathbb{N}}$ defined as follows is in ℓ^{1} but not in $U \oplus V$.

$$
x_{m}= \begin{cases}0, & \text { if } m \text { is odd } \\ \frac{1}{n^{2}}, & \text { if } m=2 n\end{cases}
$$

Proof. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$ we have $x \in \ell^{1}$. Suppose $x=u+v$ for $u \in U$ and $v \in V$. Then, $u_{2 n}=0$ implies $v_{2 n}=x_{2 n}=\frac{1}{n^{2}}$ for every $n \in \mathbb{N}$. By definition of V, we have $v_{2 n-1}=n v_{2 n}=\frac{1}{n}$ for every $n \in \mathbb{N}$. However, $\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ implies $v \notin \ell^{1}$ which contradicts the definition of V.

Claims 4, 5 and 6 imply that

$$
\overline{U \oplus V} \supset \overline{c_{c}}=\ell^{1} \supsetneq U \oplus V .
$$

Therefore, $U \oplus V$ cannot be closed.

