3.1. Bounded maps to Banach space \mathfrak{C} . Let M be a set and let $(X, \|\cdot\|_X)$ be a Banach space. Then show that the set of bounded maps

$$B(M,X) := \left\{ f \colon M \to X \mid \sup_{m \in M} \|f(m)\|_X < \infty \right\}$$

endowed with the norm

$$|f| = \sup_{m \in M} ||f(m)||_X$$

(as defined in class) is itself a Banach space.

3.2. Normal convergence C. Let $(X, \|\cdot\|)$ be a normed vector space. Prove that the following statements are equivalent.

(i) $(X, \|\cdot\|)$ is a Banach space.

(ii) For every sequence
$$(x_n)_{n \in \mathbb{N}}$$
 in X with $\sum_{k=1}^{\infty} ||x_n|| < \infty$, the limit $\lim_{N \to \infty} \sum_{n=1}^{N} x_n$ exists.

Hint. A Cauchy sequence converges if and only if it has a convergent subsequence.

3.3. Subsets with compact boundary $\mathfrak{A}_{*}^{\mathfrak{s}}$. Let $(X, \|\cdot\|)$ be an infinite-dimensional normed vector space and let $Z \subset X$ be a bounded subset with compact boundary. Prove that Z has empty interior, i.e., $Z^{\circ} = \emptyset$.

Hint. Assume that $Z^{\circ} \neq \emptyset$. Find a continuous map that projects the boundary ∂Z to the boundary of a ball inside Z. This will contradict the fact that the unit sphere in an infinite-dimensional normed space is non-compact.

3.4. Topological complement 🗱.

Definition. Let $(X, \|\cdot\|_X)$ be a Banach space. A subspace $U \subset X$ is called topologically complemented if there is a subspace $V \subset X$ such that the linear map I given by

$$I: (U \times V, \|\cdot\|_{U \times V}) \to (X, \|\cdot\|_X), \qquad \|(u, v)\|_{U \times V} := \|u\|_X + \|v\|_X, (u, v) \mapsto u + v$$

is a continuous isomorphism of normed spaces with continuous inverse. In this case V is said to be a *topological complement* of U.

- (i) Prove that $U \subset X$ is topologically complemented if and only if there exists a continuous linear map $P: X \to X$ with $P \circ P = P$ and image P(X) = U.
- (ii) Show that a topologically complemented subspace must be closed.

3.5. Closed subspaces \diamondsuit \diamondsuit . Show that the subspaces

$$U = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n} = 0 \},$$
$$V = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n-1} = nx_{2n} \}$$

are both closed in $(\ell^1, \|\cdot\|_{\ell^1})$ while the subspace $U \oplus V$ is not closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Hint. Prove that if any sequence $(x^{(k)})_{k\in\mathbb{N}}$ of elements $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in \ell^1$ converges to $(x_n)_{n\in\mathbb{N}}$ in ℓ^1 for $k \to \infty$, then each entry $x_n^{(k)}$ converges in \mathbb{R} to x_n for $k \to \infty$. For the second claim, show $c_c \subset U \oplus V$. (Recall c_c from Problem 2.4.)

3. Solutions

Solution of 3.1: We need to check that B(M, X) is complete with respect to the topology induced by the norm $|\cdot|$. Let $(f_k)_{k\in\mathbb{N}}$ be a Cauchy sequence, i.e., for every $\varepsilon > 0$ there exists $K \in \mathbb{N}$ such that $|f_k - f_h| \leq \varepsilon$ for all $k, h \geq K$. Then note that the sequence $(f_k(m))_{k\in\mathbb{N}}$ is Cauchy in $(X, \|\cdot\|_X)$ for all $m \in M$, since $|f_k(m) - f_h(m)| \leq \sup_{n \in M} \|f_k(n) - f_h(n)\|_X =$ $|f_k - f_h|$. Hence we can define a function $f \colon M \to X$ as the pointwise limit of the sequence $(f_k)_{k\in\mathbb{N}}$, namely $f(m) \coloneqq \lim_{k\to\infty} f_k(m)$, which exists for all $m \in M$ because $(f_k(m))_{k\in\mathbb{N}}$ is Cauchy in the Banach space $(X, \|\cdot\|_X)$.

Finally we need to show that $f \in B(M, X)$ and that the sequence $(f_k)_{k \in \mathbb{N}}$ converges to f with respect to the norm $|\cdot|$. To this purpose, fixed any $\varepsilon > 0$, observe that there exists $K \in \mathbb{N}$ with

$$|f_k - f_h| \le \varepsilon \; \forall k, h \ge K \implies ||f_k(m) - f_h(m)||_X \le \varepsilon \; \forall k, h \ge K \; \forall m \in M.$$

Letting $h \to \infty$, this implies

$$||f(m) - f_k(m)||_X \le \varepsilon \ \forall k \ge K \ \forall m \in M \implies |f - f_k| \le \varepsilon \ \forall k \ge K,$$

which proves that $(f_k)_{k \in \mathbb{N}}$ converges to $f \in B(M, X)$.

Solution of 3.2: If $(X, \|\cdot\|)$ is a Banach space, and $(x_k)_{k\in\mathbb{N}}$ any sequence in X with $\sum_{k=1}^{\infty} \|x_k\| < \infty$, then $(s_n)_{n\in\mathbb{N}}$ given by $s_n = \sum_{k=1}^n x_k$ is a Cauchy sequence (and hence convergent) since by assumption, every $\varepsilon > 0$ allows $N_{\varepsilon} \in \mathbb{N}$ such that for every $m \ge n \ge N_{\varepsilon}$,

$$\|s_m - s_n\| \le \sum_{k=n+1}^m \|x_k\| \le \sum_{k=N_\varepsilon+1}^\infty \|x_k\| < \varepsilon.$$

Conversely, we assume for every sequence $(x_k)_{k\in\mathbb{N}}$ in X that $\sum_{k=1}^{\infty} ||x_k|| < \infty$ implies convergence of $s_n = \sum_{k=1}^n x_k$ in X for $n \to \infty$. Let $(y_n)_{n\in\mathbb{N}}$ be a Cauchy in X. Then,

$$\forall k \in \mathbb{N} \quad \exists N_k \in \mathbb{N} \quad \forall n, m \ge N_k : \quad \|y_n - y_m\| \le 2^{-k}.$$

Without loss of generality, we can assume $N_{k+1} > N_k$. Let $x_k := y_{N_{k+1}} - y_{N_k}$. Then,

$$\sum_{k=1}^{\infty} ||x_k|| = \sum_{k=1}^{\infty} ||y_{N_{k+1}} - y_{N_k}|| \le \sum_{k=1}^{\infty} 2^{-k} < \infty,$$

which by assumption implies that

$$s_n = \sum_{k=1}^n x_k = \sum_{k=1}^n (y_{N_{k+1}} - y_{N_k}) = y_{N_{n+1}} - y_{N_1}$$

converges in X for $n \to \infty$. Hence, $(y_{N_n})_{n \in \mathbb{N}}$ is a convergent subsequence of $(y_n)_{n \in \mathbb{N}}$. Since $(y_n)_{n \in \mathbb{N}}$ is Cauchy, it converges to the same limit in X. Thus, X is complete.

Solution of 3.3: If $Z \subset X$ has non-empty interior $Z^{\circ} \neq \emptyset$, then there exists $z \in Z$ and $\varepsilon > 0$ such that $B_{\varepsilon}(z) \subset Z^{\circ}$, where $B_{\varepsilon}(z)$ denotes the ball of radius ε around z in $(X, \|\cdot\|)$ and $\partial B_{\varepsilon}(z)$ its boundary. We consider the projection

For every $y \in \partial B_{\varepsilon}$ the ray $\gamma = \{z + t(y - z) \mid t > 0\}$ must intersect ∂Z since Z is assumed to be bounded. Therefore, $P(\partial Z) = \partial B_{\varepsilon}(z)$. Being continuous, P maps compact sets onto compact sets. Since ∂Z is assumed to be compact, we have that the sphere $\partial B_{\varepsilon}(z)$ is compact. This however contradicts the assumption that the dimension of X is infinite.

Solution of 3.4:

(i) Suppose, $U \subset X$ is topologically complemented by $V \subset X$. Then, $I: U \times V \to X$ with $(u, v) \mapsto u + v$ is a continuous isomorphism with continuous inverse. We define

$$P_1: U \times V \to U \times V, \qquad P := I \circ P_1 \circ I^{-1}: X \to X.$$
$$(u, v) \mapsto (u, 0)$$

The map P_1 is linear, bounded since $||P_1(u,v)||_{U\times V} = ||u||_U \leq ||(u,v)||_{U\times V}$ and hence continuous. As composition of linear continuous maps, P is linear and continuous. Moreover,

$$P \circ P = (I \circ P_1 \circ I^{-1}) \circ (I \circ P_1 \circ I^{-1}) = I \circ P_1 \circ P_1 \circ I^{-1} = I \circ P_1 \circ I^{-1} = P,$$

$$P(X) = I(U \times \{0\}) = U.$$

Conversely, suppose $U \subset X$ allows a continuous linear map $P: X \to X$ with $P \circ P = P$ and P(X) = U. Let $V := \ker(P)$. Then

$$P \circ (1-P) = P - P = 0 \qquad \Rightarrow (1-P)(X) \subseteq \ker(P) = V. \tag{1}$$

In fact, (1-P)(X) = V since given $v \in V$ we have v = (1-P)v. Analogously,

$$(1-P) \circ P = P - P = 0 \qquad \Rightarrow U = P(X) \subseteq \ker(1-P).$$
(2)

In fact, $U = \ker(1 - P)$ since x - Px = 0 implies $x = Px \in U$. The claim is, that

$$U: U \times V \to X$$
$$(u, v) \mapsto u + v$$

is continuous and has a continuous inverse. The continuity of I follows directly from

$$||I(u,v)||_X = ||u+v||_X \le ||u||_X + ||v||_X = ||(u,v)||_{U \times V}$$

By the assumptions on P, in particular by (1), the map

$$\Phi \colon X \to U \times V$$
$$x \mapsto \left(Px, (1-P)x \right)$$

is well-defined and continuous. Since Pu = u for all $u \in U$ by (2), we have

$$(\Phi \circ I)(u, v) = \Phi(u + v) = (Pu + Pv, u - Pu + v - Pv) = (u, v).$$

(I \circ \Phi)(x) = I(Px, (1 - P)x) = Px + (1 - P)x = x,

which implies that Φ is inverse to *I*. Consequently, *U* is topologically complemented.

(ii) If $U \subset X$ is topologically complemented, then (i) implies existence of a continuous map $P: X \to X$ with ker(1 - P) = U. Thus, U must be closed as the kernel of the continuous map 1 - P.

Remark. If X is *not* isomorphic to a Hilbert space, then X has closed subspaces which are *not* topologically complemented (see [Lindenstrauss & Tzafriri. On the complemented subspaces problem. (1971)]). An example is $c_0 \subset \ell^{\infty}$ but this is not easy to prove.

Solution of 3.5:

Claim 1. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a sequence of sequences $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in \ell^1$ and let $x = (x_n)_{n\in\mathbb{N}} \in \ell^1$. Then, the following implication is true.

$$\lim_{k \to \infty} \|x^{(k)} - x\|_{\ell^1} = 0 \quad \Rightarrow \quad \forall n \in \mathbb{N} : \quad \lim_{k \to \infty} |x_n^{(k)} - x_n| = 0.$$

Proof. Let $\varepsilon > 0$ and $n \in \mathbb{N}$. By assumption, there exists $K_{\varepsilon} \in \mathbb{N}$ such that

$$\forall k \ge K_{\varepsilon}: \quad |x_n^{(k)} - x_n| \le \sum_{n=1}^{\infty} |x_n^{(k)} - x_n| = ||x^{(k)} - x||_{\ell^1} < \varepsilon.$$

Claim 2. $U = \{(x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n} = 0\}$ is closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Proof. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a sequence of sequences $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in U$ converging to $x = (x_n)_{n\in\mathbb{N}}$ in ℓ^1 . By definition, $x_{2n}^{(k)} = 0$ for every $n \in \mathbb{N}$. According to Claim 1,

$$x_{2n} = \lim_{k \to \infty} x_{2n}^{(k)} = 0$$

for every $n \in \mathbb{N}$. Thus, $x \in U$.

Claim 3. $V = \{(x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n-1} = nx_{2n}\}$ is closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Proof. Let $(x^{(k)})_{k\in\mathbb{N}}$ be a sequence of sequences $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in V$ converging to $x = (x_n)_{n\in\mathbb{N}}$ in ℓ^1 . By definition, $x_{2n-1}^{(k)} = nx_{2n}^{(k)}$ for every $n \in \mathbb{N}$. By Claim 1,

$$x_{2n-1} = \lim_{k \to \infty} x_{2n-1}^{(k)} = \lim_{k \to \infty} n x_{2n}^{(k)} = n x_{2n}$$

for every $n \in \mathbb{N}$. Thus, $x \in V$.

Claim 4.
$$c_c := \{(x_n)_{n \in \mathbb{N}} \in \ell^\infty \mid \exists N \in \mathbb{N} \forall n \ge N : x_n = 0\} \subset U \oplus V.$$

Proof. Let $x \in c_c$. Then, x = u + v with $u = (u_m)_{m \in \mathbb{N}}$ and $v = (v_m)_{m \in \mathbb{N}}$ given by

$$u_m = \begin{cases} x_m - nx_{m+1}, & \text{if } m = 2n - 1, \\ 0, & \text{if } m \text{ is even} \end{cases} \quad v_m = \begin{cases} nx_{m+1}, & \text{if } m = 2n - 1, \\ x_m, & \text{if } m \text{ is even.} \end{cases}$$

The assumption $x \in c_c$ implies $u, v \in c_c \subset \ell^1$. Then, $u \in U$ holds by construction and $v \in V$ follows from $v_{2n-1} = nx_{2n-1+1} = nx_{2n} = nv_{2n}$ for every $n \in \mathbb{N}$.

Claim 5. The space c_c is dense in $(\ell^1, \|\cdot\|_{\ell^1})$.

Proof. Let $x \in \ell^1$. Let $x^{(k)} = (x_n^{(k)})_{n \in \mathbb{N}} \in c_c$ be given by

$$x_n^{(k)} = \begin{cases} x_n & \text{ for } n < k, \\ 0 & \text{ for } n \ge k. \end{cases}$$

Then,

$$\|x^{(k)} - x\|_{\ell^1} = \sum_{n=k}^{\infty} |x_n| \xrightarrow{k \to \infty} 0.$$

Claim 6. The sequence $x = (x_m)_{m \in \mathbb{N}}$ defined as follows is in ℓ^1 but not in $U \oplus V$.

$$x_m = \begin{cases} 0, & \text{if } m \text{ is odd,} \\ \frac{1}{n^2}, & \text{if } m = 2n. \end{cases}$$

Proof. Since $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ we have $x \in \ell^1$. Suppose x = u + v for $u \in U$ and $v \in V$. Then, $u_{2n} = 0$ implies $v_{2n} = x_{2n} = \frac{1}{n^2}$ for every $n \in \mathbb{N}$. By definition of V, we have $v_{2n-1} = nv_{2n} = \frac{1}{n}$ for every $n \in \mathbb{N}$. However, $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ implies $v \notin \ell^1$ which contradicts the definition of V.

Claims 4, 5 and 6 imply that

$$\overline{U \oplus V} \supset \overline{c_c} = \ell^1 \supsetneq U \oplus V.$$

Therefore, $U \oplus V$ cannot be closed.