4.1. Operator norm

(i) Let $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ be a linear map from \mathbb{R}^{n} to itself. Show that the squared operator norm $\|A\|^{2}$ equals the largest eigenvalue of $A^{\top} A$.
(ii) Let $A \in L\left(\mathbb{R}^{2020}, \mathbb{R}^{2020}\right)$ be symmetric such that there exists a basis \mathcal{B} of \mathbb{R}^{2020} diagonalising A with eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2020}\right\}=\{1,2, \ldots, 2020\}$ each with multiplicity one.

Let $B \in L\left(\mathbb{R}^{2020}, \mathbb{R}^{2020}\right)$ be symmetric such that there exists a basis \mathcal{B}^{\prime} not necessarily equal to \mathcal{B} of \mathbb{R}^{2020} diagonalising B with eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2020}\right\}=$ $\{1,2, \ldots, 2020\}$ each with multiplicity one.

Prove that the operator norm of the composition $B A$ can be estimated by

$$
\|B A\|<4410000
$$

4.2. Right shift operator . The right shift map on the space ℓ^{2} is given by

$$
\begin{aligned}
S: \ell^{2} & \rightarrow \ell^{2} \\
\left(x_{1}, x_{2}, \ldots\right) & \mapsto\left(0, x_{1}, x_{2}, \ldots\right) .
\end{aligned}
$$

(i) Show that that the map S is a continuous linear operator with norm $\|S\|=1$.
(ii) Compute the eigenvalues and the spectral radius of S.
(iii) Show that S has a left inverse in the sense that there exists an operator $T: \ell^{2} \rightarrow \ell^{2}$ with $T \circ S=\mathrm{id}: \ell^{2} \rightarrow \ell^{2}$. Check that $S \circ T \neq \mathrm{id}$.
4.3. Volterra equation $区$. Let $k:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be continuous. Show that for every $g \in C^{0}([0,1])$ there exists a unique $f \in C^{0}([0,1])$ satisfying

$$
\forall t \in[0,1]: \quad f(t)+\int_{0}^{t} k(t, s) f(s) \mathrm{d} s=g(t) .
$$

Hint. Choose a space $\left(X,\|\cdot\|_{X}\right)$ and show that the operator $T: X \rightarrow X$ given by

$$
(T f)(t)=\int_{0}^{t} k(t, s) f(s) \mathrm{d} s
$$

has spectral radius $r_{T}=0$. Then apply Satz 2.2.7 (Struwe's notes).
4.4. Unbounded map and approximations © As in Problem 2.4, we denote the space of compactly supported sequences by

$$
c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}
$$

endowed with the norm $\|\cdot\|_{\ell \infty}$. Consider the map

$$
\begin{aligned}
T: c_{c} & \rightarrow c_{c} \\
\left(x_{n}\right)_{n \in \mathbb{N}} & \mapsto\left(n x_{n}\right)_{n \in \mathbb{N}}
\end{aligned}
$$

(i) Show that T is not continuous.
(ii) Construct continuous linear maps $T_{m}: c_{c} \rightarrow c_{c}$ such that

$$
\forall x \in c_{c}: \quad T_{m} x \xrightarrow{m \rightarrow \infty} T x .
$$

4.5. Continuity of bilinear maps spaces. We consider the space $\left(X \times Y,\|\cdot\|_{X \times Y}\right)$, where $\|(x, y)\|_{X \times Y}=\|x\|_{X}+\|y\|_{Y}$ and a bilinear map $B: X \times Y \rightarrow Z$.
(i) Show that B is continuous if

$$
\exists C>0 \quad \forall(x, y) \in X \times Y: \quad\|B(x, y)\|_{Z} \leq C\|x\|_{X}\|y\|_{Y}
$$

(ii) Assume that $\left(X,\|\cdot\|_{X}\right)$ is complete. Assume further that the maps

$$
\begin{array}{rlrl}
X & \rightarrow Z & Y & \rightarrow Z \\
x & \mapsto B\left(x, y^{\prime}\right) & y & \mapsto B\left(x^{\prime}, y\right)
\end{array}
$$

are continuous for every $x^{\prime} \in X$ and $y^{\prime} \in Y$. Prove that then, (\dagger) holds.
Hint. Apply the Theorem of Banach-Steinhaus to a suitable map but recall that it requires completeness of the domain.

4. Solutions

Solution of 4.1:

(i) Let $\langle\cdot, \cdot\rangle$ be the the Euclidean scalar product on \mathbb{R}^{n} and $|\cdot|$ the Euclidean norm. We choose the standard basis and represent $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ by a matrix which we denote also by A. Let A^{\top} be the transposed matrix. From the definition follows that

$$
\begin{aligned}
& \|A\|^{2}=\sup \left\{|A x|^{2}\left|x \in \mathbb{R}^{n},|x|^{2}=1\right\},\right. \\
& |A x|^{2}=\langle A x, A x\rangle=(A x)^{\top}(A x)=x^{\top} A^{\top} A x=\left\langle x, A^{\top} A x\right\rangle .
\end{aligned}
$$

Recall that $A^{\top} A$ is a symmetric matrix and therefore diagonalizable by an orthonormal basis of eigenvectors e_{1}, \ldots, e_{n} with real eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$. Let $x \in \mathbb{R}^{n}$ with $|x|^{2}=1$ be given. Then there exist $x_{1}, \ldots, x_{n} \in \mathbb{R}$ such that $x=x_{1} e_{1}+\ldots+x_{n} e_{n}$ and $x_{1}^{2}+\ldots+x_{n}^{2}=1$. From

$$
\left\langle x, A^{\top} A x\right\rangle=\left\langle x, A^{\top} A \sum_{i=1}^{n} x_{i} e_{i}\right\rangle=\left\langle x, \sum_{i=1}^{n} x_{i} \lambda_{i} e_{i}\right\rangle=\sum_{i=1}^{n} \lambda_{i} x_{i}^{2} \leq \lambda_{n} \sum_{i=1}^{n} x_{i}^{2}=\lambda_{n}
$$

we conclude $\|A\|^{2} \leq \lambda_{n}$. Since $\left\langle e_{n}, A^{\top} A e_{n}\right\rangle=\left\langle e_{n}, \lambda_{n} e_{n}\right\rangle=\lambda_{n}$, we have $\|A\|^{2}=\lambda_{n}$.
(ii) Since A and B are assumed to be symmetric, we have $A^{\top} A=A^{2}$ and $B^{\top} B=B^{2}$. In the basis \mathcal{B} respectively \mathcal{B}^{\prime} we see that $(2020)^{2}$ is the largest eigenvalue of A^{2} respectively B^{2}. Using (i), we have $\|A\|=2020=\|B\|$. Since $|B y| \leq\|B\||y|$ for all $y \in \mathbb{R}^{n}$ and in particular for $y=A x$, we have

$$
\|B A\|=\sup _{|x|=1}|B A x| \leq \sup _{|x|=1}\|B\||A x|=\|B\| \sup _{|x|=1}|A x|=\|B\|\|A\| \leq(2020)^{2} .
$$

To conclude, we notice that $(2020)^{2}<(2100)^{2}=21^{2} \cdot 10^{4}=441 \cdot 10^{4}$.

Solution of 4.2:

(i) Let $x \in \ell^{2}$. By definition of S and ℓ^{2}-norm, we have $\|S x\|_{\ell^{2}}=\|x\|_{\ell^{2}}$, which implies $\|S\|=1$. Being linear and bounded, the map S is continuous.
(ii) Suppose $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ satisfies $S x=\lambda x$ for some $\lambda \in \mathbb{R}$. Then

$$
\left(0, x_{1}, x_{2}, \ldots\right)=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3} \ldots\right)
$$

If $\lambda=0$, then $x=0$ is immediate. If $\lambda \neq 0$, then $x=0$ follows via

$$
0=\lambda x_{1} \Rightarrow 0=x_{1}=\lambda x_{2} \Rightarrow 0=x_{2}=\lambda x_{3} \Rightarrow \ldots
$$

We conclude that S does not have eigenvalues. The spectral radius of S is

$$
r_{S}=\lim _{n \rightarrow \infty}\left\|S^{n}\right\|^{\frac{1}{n}}=1
$$

since $\left\|S^{n}\right\|=1$ follows for every $n \in \mathbb{N}$ from $\left\|S^{n} x\right\|_{\ell^{2}}=\|x\|_{\ell^{2}}$ as in (i).
(iii) We define $T: \ell^{2} \rightarrow \ell^{2}$ to be the left shift map $T:\left(x_{1}, x_{2}, \ldots\right) \mapsto\left(x_{2}, x_{3}, \ldots\right)$. Then, $T \circ S=\mathrm{id}$ and $S \circ T \neq \mathrm{id}$. Indeed,

$$
\begin{aligned}
& (T \circ S)\left(x_{1}, x_{2}, \ldots\right)=T\left(0, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right), \\
& (S \circ T)\left(x_{1}, x_{2}, \ldots\right)=S\left(x_{2}, x_{3}, \ldots\right)=\left(0, x_{2}, x_{3}, \ldots\right)
\end{aligned}
$$

Solution of 4.3: Let $\left(X,\|\cdot\|_{X}\right)=\left(C^{0}([0,1]),\|\cdot\|_{C^{0}([0,1])}\right)$. Since the function k is continuous in both variables, the integral operator $T: X \rightarrow X$ given by

$$
(T f)(t)=\int_{0}^{t} k(t, s) f(s) \mathrm{d} s
$$

is well-defined. We claim that, for every $n \in \mathbb{N}$ and every $f \in X$ and $t \in[0,1]$, it holds

$$
\left|\left(T^{n} f\right)(t)\right| \leq \frac{t^{n}}{n!}\|k\|_{C^{0}([0,1] \times[0,1])}^{n}\|f\|_{X} .
$$

We prove the claim by induction. For $n=1$ we have

$$
|(T f)(t)| \leq \int_{0}^{t}\left|k(t, s)\|f(s) \mid \mathrm{d} s \leq t\| k\left\|_{C^{0}([0,1] \times[0,1])}\right\| f \|_{X}\right.
$$

Suppose the claim is true for some $n \in \mathbb{N}$. Then,

$$
\begin{aligned}
\left|\left(T^{n+1} f\right)(t)\right| & \leq \int_{0}^{t}\left|k(t, s) \|\left(T^{n} f\right)(s)\right| \mathrm{d} s \\
& \leq \frac{1}{n!}\|k\|_{C^{0}}^{n+1}\|f\|_{X} \int_{0}^{t} s^{n} \mathrm{~d} s=\frac{t^{n+1}}{(n+1)!}\|k\|_{C^{0}}^{n+1}\|f\|_{X}
\end{aligned}
$$

which proves the claim. Since $0 \leq t \leq 1$, the claim implies

$$
r_{T}:=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}} \leq \lim _{n \rightarrow \infty} \frac{\|k\|_{C^{0}}}{(n!)^{\frac{1}{n}}}=0 .
$$

From $r_{T}=0$ we conclude that the operator $(1+T)=(1-(-T))$ is invertible with bounded inverse (Satz 2.2.7 in Struwe's notes). The solution to the Volterra equation $f+T f=g$ is then given by $f=(1+T)^{-1} g$.

Solution of 4.4:

(i) The operation $T:\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(n x_{n}\right)_{n \in \mathbb{N}}$ is linear in each entry and therefore linear as $\operatorname{map} T: c_{c} \rightarrow c_{c}$. For every $k \in \mathbb{N}$ we define the sequence $e^{(k)}=\left(e_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ by

$$
e_{n}^{(k)}= \begin{cases}1, & \text { if } n=k \\ 0, & \text { otherwise }\end{cases}
$$

Then, $\left\|e^{(k)}\right\|_{\ell \infty}=1$ for every $k \in \mathbb{N}$ but $\left\|T e^{(k)}\right\|_{\ell \infty}=k$ is unbounded for $k \in \mathbb{N}$. As unbounded linear map, T is not continuous.
(ii) For every $m \in \mathbb{N}$ we define

$$
\begin{aligned}
T_{m}: c_{c} & \rightarrow c_{c} \\
\left(x_{n}\right)_{n \in \mathbb{N}} & \mapsto\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots, m x_{m}, 0,0, \ldots\right)
\end{aligned}
$$

Then T_{m} is linear. $T_{m}:\left(c_{c},\|\cdot\|_{\ell}^{\infty}\right) \rightarrow\left(c_{c},\|\cdot\|_{\ell}^{\infty}\right)$ is also bounded for every (fixed) $m \in \mathbb{N}$ since for every $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c}$

$$
\left\|T_{m} x\right\|=\sup _{n \in \mathbb{N}}\left|\left(T_{m} x\right)_{n}\right|=\max _{n \in\{1, \ldots, m\}}\left|n x_{n}\right| \leq m\|x\|_{\ell \infty} .
$$

Hence, T_{m} is continuous.
Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c}$ be fixed. Then there exists $N \in \mathbb{N}$ such that $x_{n}=0$ for all $n \geq N$ which implies $T_{m} x=T x$ for all $m \geq N$. In particular,

$$
T_{m} x \xrightarrow{m \rightarrow \infty} T x .
$$

Solution of 4.5:

(i) Let $\left(\left(x_{k}, y_{k}\right)\right)_{k \in \mathbb{N}}$ be a sequence in $X \times Y$ converging to (x, y) in $\left(X \times Y,\|\cdot\|_{X \times Y}\right)$. By definition,

$$
\left\|x_{k}-x\right\|_{X}+\left\|y_{k}-y\right\|_{Y}=\left\|\left(x_{k}-x, y_{k}-y\right)\right\|_{X \times Y}=\left\|\left(x_{k}, y_{k}\right)-(x, y)\right\|_{X \times Y}
$$

which yields convergence $x_{k} \rightarrow x$ in X and $y_{k} \rightarrow y$ in Y. Since $B: X \times Y \rightarrow Z$ is bilinear, we have

$$
\begin{aligned}
\left\|B\left(x_{k}, y_{k}\right)-B(x, y)\right\|_{Z} & =\left\|B\left(x_{k}, y_{k}\right)-B\left(x, y_{k}\right)+B\left(x, y_{k}\right)-B(x, y)\right\|_{Z} \\
& =\left\|B\left(x_{k}-x, y_{k}\right)-B\left(x, y_{k}-y\right)\right\|_{Z} \\
& \leq\left\|B\left(x_{k}-x, y_{k}\right)\right\|_{Z}+\left\|B\left(x, y_{k}-y\right)\right\|_{Z} .
\end{aligned}
$$

Using the assumption $\|B(x, y)\|_{Z} \leq C\|x\|_{X}\|y\|_{Y}$ and the fact, that convergence of $\left(y_{k}\right)_{k \in \mathbb{N}}$ in $\left(Y,\|\cdot\|_{Y}\right)$ implies that $\left\|y_{k}\right\|_{Y}$ is bounded uniformly for all $k \in \mathbb{N}$, we conclude

$$
\left\|B\left(x_{k}, y_{k}\right)-B(x, y)\right\|_{Z} \leq C\left\|x-x_{k}\right\|_{X}\left\|y_{k}\right\|_{Y}+C\|x\|_{X}\left\|y-y_{k}\right\|_{Y} \xrightarrow{k \rightarrow \infty} 0 .
$$

(ii) Let $B_{1}^{Y} \subset Y$ be the unit ball around the origin in $\left(Y,\|\cdot\|_{Y}\right)$. For every $x \in X$ we have by assumption

$$
\sup _{y^{\prime} \in B_{1}^{Y}}\left\|B\left(x, y^{\prime}\right)\right\|_{Z} \leq \sup _{y^{\prime} \in B_{1}^{Y}}\left\|y^{\prime}\right\|_{Y}\|B(x, \cdot)\|_{L(Y, Z)} \leq\|B(x, \cdot)\|_{L(Y, Z)}<\infty
$$

which means that the maps $\left(B\left(\cdot, y^{\prime}\right)\right)_{y^{\prime} \in B_{1}^{Y}} \in L(X, Z)$ are pointwise bounded. Since X is assumed to be complete, the Theorem of Banach-Steinhaus implies that $\left(B\left(\cdot, y^{\prime}\right)\right)_{y^{\prime} \in B_{1}^{Y}} \in$ $L(X, Z)$ are uniformly bounded, i.e.,

$$
C:=\sup _{y^{\prime} \in B_{1}^{Y}}\left\|B\left(\cdot, y^{\prime}\right)\right\|_{L(X, Z)}<\infty
$$

From that we conclude

$$
\begin{aligned}
\|B(x, y)\|_{Z} & =\|y\|_{Y}\left\|B\left(x, \frac{y}{\|y\|_{Y}}\right)\right\|_{Z} \\
& \leq\|y\|_{Y}\|x\|_{X}\left\|B\left(\cdot, \frac{y}{\|y\|_{Y}}\right)\right\|_{L(X, Z)} \leq C\|x\|_{X}\|y\|_{Y} .
\end{aligned}
$$

