5.1. Quotient of a Hilbert space \mathbb{G}. Let $(X,\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbb{C} and let $Y \subset X$ be a closed subspace. Prove that the quotient X / Y is isometric to the orthogonal Y^{\perp} of Y.
5.2. Isomorphic proper subspaces \mathbb{E}. Let $(X,\langle\cdot, \cdot\rangle)$ be a Hilbert space over \mathbb{C} endowed with a countable Hilbertian basis $\left\{e_{i}\right\}_{i \geq 1}$.
(i) For all $k \geq 1$, consider the subspace $E_{k} \subset X$ generated by $e_{1}, e_{3}, \ldots, e_{2 k-1}$, namely $E_{k}:=\left\langle e_{1}, e_{3}, \ldots, e_{2 k-1}\right\rangle_{\mathbb{C}}$ and define $Y:=\cup_{k \geq 1} E_{k}$. Is Y closed?
(ii) Construct a proper subspace $Z \subsetneq X$ such that there exists an isomorphism $T: Z \rightarrow$ X of Banach spaces.
5.3. Odd and even functions define the subset of odd functions $D:=\{f \in H \mid f(-x)=-f(x)$ for a.e. $x \in(-1,1)\}$ and the subset of even functions $P:=\{f \in H \mid f(-x)=f(x)$ for a.e. $x \in(-1,1)\}$.
(i) Prove that D and P are closed subspaces of H.
(ii) Prove that $H=D \oplus P$ and $D \perp P$. Hence deduce that $D^{\perp}=P$ and $P^{\perp}=D$.
(iii) Compute the orthogonal projections $\pi_{D}: H \rightarrow D$ and $\pi_{P}: H \rightarrow P$.
(iv) Find a Hilbertian basis for both D and P.
5.4. Notable series 曲. Specifying Parseval's identity to $f(x)=x$ (seen as an element of $\left.L^{2}((-\pi, \pi) ; \mathbb{R})\right)$ show that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6} .
$$

5.5. Closed sum of subspaces . Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space an let $U, V \subset X$ be subspaces. Prove the following.
(i) If U is finite dimensional and V closed, then $U+V$ is a closed subspace of X.
(ii) If V is closed with finite codimension, i.e., $\operatorname{dim}(X / V)<\infty$, then $U+V$ is closed.

Hint. Is the canonical quotient map $\pi: X \rightarrow X / V$ continuous? What is $\pi^{-1}(\pi(U))$?
5.6. Vanishing boundary values . Let $X=C^{0}([0,1])$ and $U=C_{0}^{0}([0,1]):=\{f \in$ $\left.C^{0}([0,1]) \mid f(0)=0=f(1)\right\}$.
(i) Show that U is a closed subspace of X endowed with the norm $\|\cdot\|_{X}=\|\cdot\|_{C^{0}([0,1])}$.
(ii) Compute the dimension of the quotient space X / U and find a basis for X / U.

5. Solutions

Solution of 5.1: Consider the orthogonal projection $\pi_{Y \perp}: X \rightarrow Y^{\perp}$ of X onto the closed subspace Y^{\perp}. Note that $x \in \operatorname{ker} \pi_{Y^{\perp}}$ if and only if $\langle x, z\rangle=0$ for all $z \in Y^{\perp}$, if and only if $x \in Y$. Moreover $\pi_{Y^{\perp}}$ is obviously surjective since $\pi_{Y^{\perp}}(z)=z$ for all $z \in Y^{\perp}$. Hence we can consider the map $F: X / Y \rightarrow Y^{\perp}$ such that $F([x])=\pi_{Y} \perp(x)$, which is well-defined, linear and bijective thanks to what we said above. Let us prove that F is an isometry. For all $x \in X$, we have that

$$
\|F([x])\|=\left\|\pi_{Y^{\perp}}(x)\right\|=\left\|x-\pi_{Y}(x)\right\|=\inf _{y \in Y}\|x, y\|=\|[x]\|_{X / Y}
$$

where we used the properties of the orthogonal projection and the definition of norm on the quotient space. By linearity, this is sufficient to prove that F is an isometry, as desired.

Solution of 5.2:

(i) We claim that Y is not closed. Let us consider the sequence $\left\{y_{k}\right\}_{k \geq 1}$ in Y given by $y_{k}:=\sum_{i=1}^{k} e_{2 i-1} / 2^{i}$. Note that $y_{k} \in E_{k} \subset Y$ and the sequence converges to $\bar{y}:=$ $\sum_{i \geq 1} e_{2 i-1} / 2^{i} \in X$. However observe that \bar{y} is not contained in Y. Indeed assume by contradiction that \bar{y} is contained in Y, then there exists $k \geq 1$ such that $\bar{y} \in E_{k}$. However \bar{y} cannot be contained in the span of $e_{1}, e_{3}, \ldots, e_{2 k-1}$, because otherwise we would find a nontrivial linear dependence for $e_{1}, e_{3}, e_{5}, \ldots$, which is impossible since $\left\{e_{i}\right\}_{i \geq 1}$ is a Hilbertian basis.
(ii) Let us consider the closed subspace $Z:=\bar{Y}$. Note that Z is a proper subspace since, for example, $e_{2} \notin Z$, because e_{2} is orthogonal to Y and thus to Z. Moreover observe that $\left\{e_{2 i-1}\right\}_{i \geq 1}$ is a Hilbertian basis for Z. Let us consider the map $T: Z \rightarrow X$ defined on the basis $\left\{e_{2 i-1}\right\}_{i \geq 1}$ as $T\left(e_{2 i-1}\right)=e_{i}$. Note that T is easily bounded on the closed unit ball of Z, hence continuous. Indeed, for all $z=\sum_{i \geq 1} a_{i} e_{2 i-1}$ with norm less or equal than 1 (i.e., $\|z\|^{2}=\left\|\sum_{i \geq 1} a_{i} e_{2 i-1}\right\|^{2}=\sum_{i \geq 1}\left|a_{i}\right|^{2} \leq 1$), we have that

$$
\|T(z)\|^{2}=\left\|T\left(\sum_{i \geq 1} a_{i} e_{2 i-1}\right)\right\|^{2}=\left\|\sum_{i \geq 1} a_{i} e_{i}\right\|^{2}=\sum_{i \geq 1}\left|a_{i}\right|^{2}=\left\|\sum_{i \geq 1} a_{i} e_{2 i-1}\right\|^{2}=\|z\|^{2} \leq 1
$$

Moreover T is obviously a linear bijection. The inverse of T is defined on the basis $\left\{e_{i}\right\}_{i \geq 1}$ as $T^{-1}\left(e_{i}\right)=e_{2 i-1}$. With the same computation as above, one can check that $\left\|T^{-1}(x)\right\|=\|x\|$ for all $x \in X$, which proves that T is a continuous linear bijection with continuous inverse, hence it is an isomorphism between Z and X.

Solution of 5.3:

(i) Let us consider the map $\phi: H \rightarrow H$ defined as $\phi(h)(x):=(h(x)+h(-x)) / 2$ for all $h \in H$ and $x \in(-1,1)$. Note that

$$
\|\phi(h)\|_{L^{2}}=\left\|\frac{h(x)+h(-x)}{2}\right\|_{L^{2}} \leq \frac{\|h(x)\|_{L^{2}}+\|h(-x)\|_{L^{2}}}{2}=\|h\|_{L^{2}}
$$

thus ϕ is continuous. Moreover note that $h \in \operatorname{ker} \phi$ if and only if $h(x)+h(-x)=0$ for a.e. $x \in(-1,1)$, if and only if $h \in D$. This prove that $D=\operatorname{ker} \phi$ is a closed subspace of H, since it is the kernel of a continuous linear operator.

Analogously we can prove that $P=\operatorname{ker} \varphi$, where $\varphi: H \rightarrow H$ is the continuous linear operator given by $\varphi(h)(x)=(h(x)-h(-x)) / 2$ for all $h \in H$ and $x \in(-1,1)$. Hence P is closed subspace of H as well.
(ii) Let us first prove that D and P are orthogonal. Consider $f \in D$ and $g \in P$, then we have that

$$
\begin{aligned}
\langle f, g\rangle_{L^{2}} & =\int_{-1}^{1} f(x) g(x)=\int_{0}^{1} f(x) g(x)+\int_{-1}^{0} f(x) g(x) \\
& =\int_{0}^{1} f(x) g(x)+\int_{0}^{1} f(-x) g(-x)=\int_{0}^{1} f(x) g(x)-\int_{0}^{1} f(x) g(x)=0
\end{aligned}
$$

Now let us consider any function $h \in H$ and define the functions $f(x):=\varphi(h)(x)=$ $(h(x)-h(-x)) / 2$ and $g(x):=\phi(h)(x)=(h(x)+h(-x)) / 2$. Note that $f \in D$ and $g \in P$ and that

$$
f(x)+g(x)=\frac{h(x)-h(-x)}{2}+\frac{h(x)+h(-x)}{2}=h(x) .
$$

This proves that $H=D \oplus P$, which, together with the orthogonality between D and P, proves that $D^{\perp}=P$ and $P^{\perp}=D$.
(iii) We claim that $\pi_{D}=\varphi$ and $\pi_{P}=\phi$. Let us prove the first equality, since the second one follows analogously. We have to check that $\langle h-\varphi(h), f\rangle=0$ for all $f \in D$. However note that we proved in (ii) that $h-\varphi(h)=\phi(h) \in P$ and that $P \perp D$, hence $\langle h-\varphi(h), f\rangle=\langle\phi(f), f\rangle=0$ for all $f \in D$, as desired.
(iv) We claim that $\mathcal{B}_{D}:=\{\sin (\pi n x)\}_{n \geq 1}$ is a Hilbertian basis for D and that $\mathcal{B}_{P}:=$ $\{1 / 2\} \cup\{\cos (\pi n x)\}_{n \geq 1}$ is a Hilbertian basis for P. Indeed recall that $\mathcal{B}_{D} \cup \mathcal{B}_{P}$ is a Hilbertian basis for $L^{2}((-1,1) ; \mathbb{R})$ and obviously we have that $\mathcal{B}_{D} \subset D$ and $\mathcal{B}_{P} \subset P$. This two fact together are easily sufficient to prove that \mathcal{B}_{D} and \mathcal{B}_{P} are Hilbert bases of D and P respectively.

Solution of 5.4: Recall that a Hilbertian basis of $L^{2}((-\pi, \pi) ; \mathbb{R})$ is

$$
\{1 / \sqrt{2 \pi}\} \cup\{\cos (k x) / \sqrt{\pi}\}_{k \geq 1} \cup\{\sin (k x) / \sqrt{\pi}\}_{k \geq 1}
$$

Since $f(x)=x$ is odd, it can be express only in terms of the elements $\{\sin (k x) / \sqrt{\pi}\}_{k \geq 1}$ of the basis (see also (iv) in Problem 5.3). In particular we have that

$$
f(x)=\sum_{k \geq 1} a_{k} \sin (k x),
$$

where

$$
a_{k}:=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin (k x) x=\frac{1}{\pi}\left[-\frac{1}{k} \cos (k x) x\right]_{-\pi}^{\pi}+\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{k} \cos (k x)=\frac{2(-1)^{k+1}}{k} .
$$

Hence, specifying Parseval's identity, we get that

$$
\frac{2 \pi^{2}}{3}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2}=\frac{1}{\pi}\|x\|_{L^{2}}^{2}=\sum_{k \geq 1}\left|a_{k}\right|^{2}=\sum_{k \geq 1} \frac{4}{k^{2}},
$$

which implies exactly the desired formula by rearranging the terms.

Solution of 5.5: Since the subspace $V \subset X$ is closed in both statements (i) and (ii), the canonical quotient map $\pi: X \rightarrow X / V$ is continuous (Satz 2.3.1).
(i) $\operatorname{dim} \pi(U) \leq \operatorname{dim} U<\infty$ implies that $\pi(U) \subset X / V$ is closed (Satz 2.1.3). Since π is continuous, $\pi^{-1}(\pi(U))=U+V \subset X$ is also closed.
(ii) Since $\operatorname{dim} \pi(U) \leq \operatorname{dim}(X / V)<\infty$, we can argue the same way as in (i).

Solution of 5.6:

(i) Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence in U which converges to f in $\left(X,\|\cdot\|_{X}\right)$. Then, since $f_{n}(0)=0=f_{n}(1)$, we can colclude $f(0)=0=f(1)$, i.e., $f \in U$ by passing to the limit $n \rightarrow \infty$ in the following inequalities.

$$
\begin{aligned}
& |f(0)|=\left|f_{n}(0)-f(0)\right| \leq \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=\left\|f_{n}-f\right\|_{X}, \\
& |f(1)|=\left|f_{n}(1)-f(1)\right| \leq \sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right|=\left\|f_{n}-f\right\|_{X} .
\end{aligned}
$$

(ii) Let $u_{1}, u_{2} \in X$ be given by $u_{1}(t)=1-t$ and $u_{2}(t)=t$. We claim that the equivalence classes $\left[u_{1}\right],\left[u_{2}\right] \in X / U$ form a basis for X / U.

Figure 1: The functions $u_{1}, u_{2} \in X$ and some $f \in\left[u_{1}\right]$.
To prove linear independence, let $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $\lambda_{1}\left[u_{1}\right]+\lambda_{2}\left[u_{2}\right]=0 \in X / U$ which means $\lambda_{1} u_{1}+\lambda_{2} u_{2} \in U$. This implies by definition

$$
\lambda_{1}=\lambda_{1} u_{1}(0)+\lambda_{2} u_{2}(0)=0=\lambda_{1} u_{1}(1)+\lambda_{2} u_{2}(1)=\lambda_{2} .
$$

To show that $\left[u_{1}\right]$ and $\left[u_{2}\right]$ span X / U, let $[h] \in X / U$ with representative $h \in X$. By evaluation at $t=0$ and $t=1$, we conclude

$$
\left(t \mapsto h(t)-h(0) u_{1}(t)-h(1) u_{2}(t)\right) \in U .
$$

This implies $[h]=h(0)\left[u_{1}\right]+h(1)\left[u_{2}\right]$ in X / U which proves the claim.
Remark. The components of [h] in this basis are unique since every representative $\tilde{h} \in[h]$ must have the same boundary values $\tilde{h}(0)=h(0)$ and $\tilde{h}(1)=h(1)$.

