7.1. Dense kernel © Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $f: X \rightarrow \mathbb{R}$ be linear and not identically zero. Show that f is not continuous if and only if $\operatorname{ker}(f)$ is dense in X.
7.2. Complementing subspaces of finite dimension or codimension Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and $U \subset X$ a closed subspace. Prove that:
(i) if $\operatorname{dim}(U)=n<\infty$, then U is topologically complemented;
(ii) if $\operatorname{dim}(X / U)=m<\infty$, then U is topologically complemented.

Remark. The notion of topological complement was defined in Problem 3.4. There we showed that $U \subset X$ is topologically complemented if (and only if) there exists a continuous linear map $P: X \rightarrow X$ with $P \circ P=P$ and image $P(X)=U$.
7.3. Attaining the distance from the kernel $\boldsymbol{\theta}^{*}$. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $\varphi: X \rightarrow \mathbb{R}$ be a continuous linear functional. Assume $N:=\operatorname{ker}(\varphi) \subsetneq X$ and let $x_{0} \in X \backslash N$. Prove that the following statements are equivalent.
(i) There exists $y_{0} \in N$ with $\left\|x_{0}-y_{0}\right\|_{X}=\operatorname{dist}\left(x_{0}, N\right)$.
(ii) There exists $x_{1} \in X$ with $\left\|x_{1}\right\|_{X}=1$ and $\|\varphi\|=\left|\varphi\left(x_{1}\right)\right|$.
7.4. Not attaining the distance from the kernel . Consider the Banach space $\left(X,\|\cdot\|_{X}\right)=\left(C^{0}([-1,1]),\|\cdot\|_{C^{0}([-1,1])}\right)$. Consider the map $\varphi: X \rightarrow \mathbb{R}$ given by

$$
\varphi(f)=\int_{0}^{1} f(t) \mathrm{d} t-\int_{-1}^{0} f(t) \mathrm{d} t
$$

(i) Show that $\varphi \in L(X, \mathbb{R})$ with $\|\varphi\|_{L(X, \mathbb{R})}=2$.
(ii) Prove that there does not exist $f \in X$ with $\|f\|_{X}=1$ and $|\varphi(f)|=2$.

Now consider the kernel $N:=\{f \in X \mid \varphi(f)=0\}$ of φ and some $g_{0} \in X \backslash N$.
(iii) Show that N is closed.
(iv) Show that there does not exist any $f_{0} \in N$ such that $\left\|f_{0}-g_{0}\right\|_{X}=\operatorname{dist}\left(g_{0}, N\right)$.
7.5. Unique extension of functionals on Hilbert spaces Let $\left.\left(H,(\cdot, \cdot)_{H}\right)\right)$ be a Hilbert space. Let $Y \subset H$ be any subspace and let $f: Y \rightarrow \mathbb{R}$ be a continuous linear functional. The Hahn-Banach Theorem allows an extension $F: H \rightarrow \mathbb{R}$ with $\left.F\right|_{Y}=f$ and $\|F\|=\|f\|$. Prove that F is unique.
7.6. Distance from convex sets in Hilbert spaces Let $\left(H,(\cdot, \cdot)_{H}\right)$ be a Hilbert space and $\emptyset \neq Q \subset H$ a convex subset. Let $x \in H$ with distance $d:=\operatorname{dist}(x, Q)$ from Q. Prove the following statements.
(i) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in Q with $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|_{H}=d$ is a Cauchy sequence in H.
(ii) Suppose Q is closed in H. Then there exists a unique $y \in Q$ with $\|x-y\|_{H}=d$.

7. Solutions

Solution of 7.1:

" \Rightarrow " Suppose that f is not continuous. Then there exists a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X, which can be normed to $\left\|x_{k}\right\|_{X}=1$ by linearity of f, such that $\left|f\left(x_{k}\right)\right| \rightarrow \infty$ as $k \rightarrow \infty$. Without loss of generality, we can assume $f\left(x_{k}\right) \neq 0$ for every $k \in \mathbb{N}$. The goal is to approximate any $z \in X$ by elements $y_{k} \in \operatorname{ker}(f)$. For each $k \in \mathbb{N}$ we define

$$
y_{k}:=z-\frac{f(z)}{f\left(x_{k}\right)} x_{k}, \quad \Longrightarrow \quad f\left(y_{k}\right)=f(z)-\frac{f(z)}{f\left(x_{k}\right)} f\left(x_{k}\right)=0 \quad \Longrightarrow \quad y_{k} \in \operatorname{ker}(f) .
$$

Indeed, the sequence $\left(y_{k}\right)_{k \in \mathbb{N}}$ approximates z in X because

$$
\left\|z-y_{k}\right\|_{X}=\left|\frac{f(z)}{f\left(x_{k}\right)}\right|\left\|x_{k}\right\|_{X}=\frac{|f(z)|}{\left|f\left(x_{k}\right)\right|} \xrightarrow{k \rightarrow \infty} 0^{\prime}
$$

Hence we have shown that $\operatorname{ker}(f)$ is dense in X.
" \Leftarrow " Conversely, we assume $\overline{\operatorname{ker}(f)}=X$ and claim that f is not continuous. Since we assume $f \not \equiv 0$ there exists $x \in X$ with $f(x) \neq 0$. Since the kernel is dense, there exists a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in $\operatorname{ker}(f)$ with $\left\|x_{k}-x\right\|_{X} \rightarrow 0$ as $k \rightarrow \infty$. But this violates continuity, since $\lim _{k \rightarrow \infty} f\left(x_{k}\right)=0 \neq f(x)$.

Solution of 7.2:

(i) Let e_{1}, \ldots, e_{n} be a basis of the given finite-dimensional subspace $U \subset X$. For $i \in$ $\{1, \ldots, n\}$, we define the linear functionals $f_{i}: U \rightarrow \mathbb{R}$ by

$$
f_{i}\left(e_{j}\right)=\delta_{i j}:= \begin{cases}1, & \text { if } i=j \\ 0, & \text { else }\end{cases}
$$

Recall that, by linearity, it suffices to define the functionals on a basis of U. Since U is finite dimensional, $f_{i} \in L(U ; \mathbb{R})$. From the Hahn-Banach Theorem follows (Satz 4.1.3) that there exist extensions $F_{i} \in L(X ; \mathbb{R})$ with $\left\|F_{i}\right\|=\left\|f_{i}\right\|$. We define

$$
\begin{aligned}
P: X & \rightarrow X \\
x & \mapsto \sum_{i=1}^{n} F_{i}(x) e_{i} .
\end{aligned}
$$

Then, P is linear and also continuous, since

$$
\|P x\|_{X} \leq\left(\sum_{i=1}^{n}\left\|F_{i}\right\|\left\|e_{i}\right\|_{X}\right)\|x\|_{X}
$$

By construction, $P(X) \subset \operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}=U$. Moreover by definition of f_{i} and F_{i} we have $P\left(e_{i}\right)=e_{i}$ for every $i \in\{1, \ldots, n\}$. Therefore, $P(X)=U$. Finally, for every $x \in X$,

$$
(P \circ P)(x)=P\left(\sum_{i=1}^{n} F_{i}(x) e_{i}\right)=\sum_{i=1}^{n} F_{i}(x) P\left(e_{i}\right)=\sum_{i=1}^{n} F_{i}(x) e_{i}=P(x) .
$$

From Problem 3.4 (i) then follows that U is topologically complemented.
(ii) Recall that the quotient space X / U consists of equivalence classes, which we denote by $[x]$ for every $x \in X$, and comes with a canonical quotient map $\pi: X \rightarrow X / U$. Since $\operatorname{dim}(X / U)=m<\infty$ we can choose a basis $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ for X / U along with a representative $e_{i} \in X$ for each element $\left[e_{i}\right]$ of the basis. As in (i) we define linear functionals $f_{i}: X / U \rightarrow \mathbb{R}$ for $i \in\{1, \ldots, m\}$ by $f_{i}\left(\left[e_{j}\right]\right)=\delta_{i j}$. Now, we just set $F_{i}:=f_{i} \circ \pi: X \rightarrow \mathbb{R}$ in order to define

$$
\begin{aligned}
P: X & \rightarrow X \\
x & \mapsto \sum_{i=1}^{n} F_{i}(x) e_{i} .
\end{aligned}
$$

Since $F_{i}\left(e_{j}\right)=f_{i}\left(\pi\left(e_{j}\right)\right)=f_{i}\left(\left[e_{j}\right]\right)=\delta_{i j}$ we have $P \circ P=P$ as in (i). Since $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ is a basis for X / U, the representatives e_{1}, \ldots, e_{m} must be linearly independent in X. Therefore, $P(x)=0$ implies $F_{i}(x)=f_{i}([x])=0$ for every $i \in\{1, \ldots, m\}$, which in turn implies $[x]=[0]$ or $x \in U$. Conversely, $x \in U$ implies $\pi(x)=[0]$ and $P(x)=0$. Thus we have shown $\operatorname{ker}(P)=U$. As in Problem 3.4 (i), we conclude that $(1-P)$ is a continuous projection onto U which implies that U is topologically complemented.

Solution of 7.3: Given a normed space $\left(X,\|\cdot\|_{X}\right)$, a continuous linear functional $\varphi: X \rightarrow$ \mathbb{R} with kernel $N:=\operatorname{ker}(\varphi) \subsetneq X$ and a point $x_{0} \in X \backslash N$, the claim is equivalence of
(i) There exists $y_{0} \in N$ with $\left\|x_{0}-y_{0}\right\|_{X}=\operatorname{dist}\left(x_{0}, N\right)=: d$,
(ii) There exists $x_{1} \in X$ with $\left\|x_{1}\right\|_{X}=1$ and $\|\varphi\|=\left|\varphi\left(x_{1}\right)\right|$.

The first isomorphism theorem states that the quotient space X / N is isomorphic to the image of φ. Since $\varphi\left(x_{0}\right) \neq 0$ and $\varphi\left(\lambda x_{0}\right)=\lambda \varphi\left(x_{0}\right)$ for every $\lambda \in \mathbb{R}$, the image of φ is \mathbb{R}, which means that X / N is one-dimensional. Therefore, every element $[x] \in X / N$ is of the form $[x]=t\left[x_{0}\right]$ for some uniquely determined $t \in \mathbb{R}$. This means that every element $x \in X$ is of the form $x=t x_{0}+y$ for some uniquely determined $t \in \mathbb{R}$ and $y \in N$.
"(i) \Rightarrow (ii)" Let us denote $d:=\left\|x_{0}-y_{0}\right\|_{X}=\operatorname{dist}\left(x_{0}, N\right)$ and define $x_{1}=\left(x_{0}-y_{0}\right) / d$, then $\left\|x_{1}\right\|_{X}=1$. We claim that $\left|\varphi\left(x_{1}\right)\right|=\|\varphi\|$. First of all we have

$$
\left|\varphi\left(x_{1}\right)\right|=\frac{\left|\varphi\left(x_{1}\right)\right|}{\left\|x_{1}\right\|_{X}} \leq \sup _{x \in X} \frac{|\varphi(x)|}{\|x\|_{X}}=\|\varphi\| .
$$

Given any $x \in X$, let $t \in \mathbb{R}$ and $y \in N$ be as above. If $t=0$, then $\varphi(x)=0$. Therefore, we assume $t \neq 0$ and observe

$$
\begin{aligned}
|\varphi(x)| & =\left|\varphi\left(t x_{0}+y\right)\right|=\left|\varphi\left(t d x_{1}+t y_{0}+y\right)\right|=|t| d\left|\varphi\left(x_{1}\right)\right|, \\
\|x\|_{X} & =\left\|t x_{0}+y\right\|_{X}=|t|\left\|x_{0}+\frac{1}{t} y\right\|_{X} \geq|t| \inf _{\tilde{y} \in N}\left\|x_{0}-\tilde{y}\right\|_{X}=|t| d .
\end{aligned}
$$

This implies that

$$
\left|\varphi\left(x_{1}\right)\right|=\frac{\left|\varphi\left(x_{1}\right)\right|}{\left\|x_{1}\right\|_{X}} \leq \sup _{x \in X} \frac{|\varphi(x)|}{\|x\|_{X}} \leq \frac{|t| d\left|\varphi\left(x_{1}\right)\right|}{|t| d}=\left|\varphi\left(x_{1}\right)\right| .
$$

Thus, the inequalities above are in fact equalities and we conclude $\left|\varphi\left(x_{1}\right)\right|=\|\varphi\|$.
"(ii) \Rightarrow (i)" As above, we have $x_{1}=t x_{0}+y_{1}$ for some uniquely determined $t \in \mathbb{R}$ and $y_{1} \in N$. In fact, $t \neq 0$ since $\left|\varphi\left(x_{1}\right)\right|=\|\varphi\| \neq 0$. Therefore, $x_{0}=\frac{1}{t}\left(x_{1}-y_{1}\right)$ and

$$
\left\|x_{0}+\frac{1}{t} y_{1}\right\|_{X}=\left\|\frac{1}{t} x_{1}\right\|_{X}=\frac{1}{|t|} .
$$

Now we use the fact that any $z \in X$ satisfies the estimate

$$
\|\varphi\| \geq \frac{|\varphi(z)|}{\|z\|_{X}} \quad \Longrightarrow\|z\|_{X} \geq \frac{|\varphi(z)|}{\|\varphi\|}
$$

to obtain that, given any $y \in N$, we have

$$
\begin{aligned}
\left\|x_{0}-y\right\|_{X} & =\left\|\frac{1}{t} x_{1}-\frac{1}{t} y_{1}-y\right\|_{X} \\
& \geq \frac{\left|\varphi\left(\frac{1}{t} x_{1}-\frac{1}{t} y_{1}-y\right)\right|}{\|\varphi\|}=\frac{\left|\varphi\left(x_{1}\right)\right|}{|t|\|\varphi\|}=\frac{1}{|t|}=\left\|x_{0}+\frac{1}{t} y_{1}\right\|_{X} .
\end{aligned}
$$

Since $y_{0}:=-\frac{1}{t} y_{1} \in N$ we conclude that $y_{0} \operatorname{attains} \operatorname{dist}\left(x_{0}, N\right)$.

Solution of 7.4:

(i) Linearity of $\varphi: X \rightarrow \mathbb{R}$ follows from linearity of the integral. Moreover,

$$
|\varphi(f)| \leq \int_{0}^{1}|f(t)| \mathrm{d} t+\int_{-1}^{0}|f(t)| \mathrm{d} t \leq 2\|f\|_{C^{0}([-1,1])}=2\|f\|_{X}
$$

implies

$$
\|\varphi\|_{L(X, \mathbb{R})}=\sup _{f \in X \backslash\{0\}} \frac{|\varphi(f)|}{\|f\|_{X}} \leq 2 .
$$

Since φ is linear, continuity follows from boundedness by Satz 2.2.1.
The sign function $f(x)=\frac{x}{|x|}$ is approximated pointwise by the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions $f_{n} \in X$ given by

$$
f_{n}(t)= \begin{cases}-1, & \text { for }-1 \leq t<-\frac{1}{n} \\ n t, & \text { for }-\frac{1}{n} \leq t<\frac{1}{n} \\ 1, & \text { for } \quad \frac{1}{n} \leq t \leq 1\end{cases}
$$

In particular, $\left\|f_{n}\right\|_{X}=1$ for every $n \in \mathbb{N}$. Computing the integrals explicitly, or applying the dominated convergence theorem, we have

$$
\lim _{n \rightarrow \infty} \varphi\left(f_{n}\right)=2,
$$

which proves that $\|\varphi\|=2$.
(ii) Suppose there exists $f \in X$ with $\|f\|_{X}=1$ and $|\varphi(f)|=2$. Since φ is linear, we may assume $\varphi(f)=2$, otherwise we replace f by $-f$. Then, the estimates

$$
\left|\int_{0}^{1} f(t) \mathrm{d} t\right| \leq \max _{x \in[-1,1]}|f(x)|=\|f\|_{X}=1, \quad\left|\int_{-1}^{0} f(t) \mathrm{d} t\right| \leq 1,
$$

imply by definition of φ that

$$
\begin{equation*}
\int_{0}^{1} f(t) \mathrm{d} t=-\int_{-1}^{0} f(t) \mathrm{d} t=1 \tag{*}
\end{equation*}
$$

Since f is bounded from above by 1 we can conclude from $(*)$ that $\left.f\right|_{(0,1]} \equiv 1$. In fact, if $f\left(t^{*}\right)<1$ for some $t^{*} \in(0,1]$, then $f<1$ in some neighbourhood of t^{*} by continuity of f which together with the uniform bound $f \leq 1$ contradicts $(*)$.
Analogously, we conclude $\left.f\right|_{[-1,0)} \equiv-1$ which (combined with $\left.f\right|_{(0,1]} \equiv 1$) violates continuity of f at 0 .
(iii) From (i) we know that $\varphi: X \rightarrow \mathbb{R}$ is a continuous linear functional. Therefore $N=\operatorname{ker}(\varphi)$ is a closed subspace of X.

By (ii) we know that there does not exist $f \in X$ with $\|f\|_{X}=1$ and $|\varphi(f)|=2$. Hence, by Problem 7.3, this proves that it does not exist any $y_{0} \in N$ such that $\left\|x_{0}-y_{0}\right\|=\operatorname{dist}\left(x_{0}, N\right)$.

Solution of 7.5: As a continuous linear operator $f: Y \subset H \rightarrow \mathbb{R}$ is closable. Let \bar{f} be its closure. We claim that $D(\bar{f})=\bar{Y}$. A priori, we only know $D(\bar{f}) \subset \overline{D(f)}=\bar{Y}$. Therefore, we consider $y \in \bar{Y}$ together with a sequence $\left(y_{k}\right)_{k \in \mathbb{N}}$ in Y such that $\left\|y-y_{k}\right\|_{H} \rightarrow 0$ as $k \rightarrow \infty$. From

$$
\left|f\left(y_{n}\right)-f\left(y_{m}\right)\right| \leq\|f\|\left\|y_{n}-y_{m}\right\|_{H},
$$

we conclude that $\left(f\left(y_{k}\right)\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{R}. Thus, there exists $z \in \mathbb{R}$ such that $f\left(y_{k}\right) \rightarrow z$ as $k \rightarrow \infty$. This means that (y, z) is in the closure of the graph of f and we conclude $y \in D(\bar{f})$. Moreover, by continuity of the norm,

$$
|\bar{f}(y)|=\lim _{k \rightarrow \infty}\left|f\left(y_{k}\right)\right| \leq \lim _{k \rightarrow \infty}\|f\|\left\|y_{k}\right\|_{H}=\|f\|\|y\|_{H} \quad \Longrightarrow\|\bar{f}\|=\|f\|
$$

The argument above shows that in order to extend $f: Y \rightarrow \mathbb{R}$, we can first uniquely extend to $\bar{f}: \bar{Y} \rightarrow \mathbb{R}$ without changing the norm and then extend to $F: H \rightarrow \mathbb{R}$ with the advantage that we can now work with the closed subspace \bar{Y}. In fact, $\left(\bar{Y},(\cdot, \cdot)_{H}\right)$ is a Hilbert space. This allows us to apply the Riesz representation theorem, namely there exists a unique $h \in \bar{Y}$ such that for all $y \in \bar{Y}$

$$
\bar{f}(y)=(y, h)_{H} .
$$

This suggests the extension

$$
\begin{aligned}
F: H & \rightarrow \mathbb{R} \\
x & \mapsto(x, h)_{H}
\end{aligned}
$$

which satisfies $\|F\|=\|h\|_{H}=\|\tilde{f}\|=\|f\|$. Is this extension unique? If $\tilde{F}: H \rightarrow \underset{\sim}{\mathbb{R}}$ is another extension of \bar{f} with $\|\tilde{F}\|=\|\bar{f}\|$ then it must be also of the form $\tilde{F}(x)=(x, \tilde{h})_{H}$ for some $\tilde{h} \in H$ by the Riesz representation theorem.
Since $\left.\tilde{F}\right|_{\bar{Y}}=\bar{f}=\left.F\right|_{\bar{Y}}$, we have

$$
\forall y \in \bar{Y}: \quad 0=F(y)-\tilde{F}(y)=(y, h)_{H}-(y, \tilde{h})_{H}=(y, h-\tilde{h})_{H}
$$

which implies $h-\tilde{h} \in \bar{Y}^{\perp}$. Since $h \in \bar{Y}$ and $\|h\|_{H}=\|F\|=\|\tilde{F}\|=\|\tilde{h}\|$, we have

$$
\|h\|_{H}^{2}=\|\tilde{h}\|_{H}^{2}=\|\tilde{h}-h+h\|_{H}^{2}=\|\tilde{h}-h\|_{H}^{2}+\|h\|_{H}^{2},
$$

where we used $(\tilde{h}-h) \perp h$. This implies $\|\tilde{h}-h\|_{H}^{2}=0$. Therefore, $\tilde{h}=h$ and F is the unique extension of f with $\|F\|=\|f\|$.

Solution of 7.6: Without loss of generality, we can assume $x=0$. Otherwise we apply the translation $y \mapsto y-x$ which is an isometry in the entire space H.
(i) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in the convex set $Q \subset H$ with $\left\|x_{n}\right\| \rightarrow d=\operatorname{dist}(0, Q)$ as $n \rightarrow \infty$. By convexity of Q, the implications

$$
x_{n}, x_{m} \in Q \quad \Longrightarrow \quad \frac{x_{n}+x_{m}}{2} \in Q \quad \Longrightarrow\left\|\frac{x_{n}+x_{m}}{2}\right\|_{H} \geq \operatorname{dist}(0, Q)=d
$$

hold for all $n, m \in \mathbb{N}$. Hence the parallelogram identity yields

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\|_{H}^{2} & =2\left\|x_{n}\right\|_{H}^{2}+2\left\|x_{m}\right\|_{H}^{2}-\left\|x_{n}+x_{m}\right\|_{H}^{2} \\
& =2\left\|x_{n}\right\|_{H}^{2}+2\left\|x_{m}\right\|_{H}^{2}-4\left\|\frac{x_{n}+x_{m}}{2}\right\|_{H}^{2} \leq 2\left\|x_{n}\right\|_{H}^{2}+2\left\|x_{m}\right\|_{H}^{2}-4 d^{2} .
\end{aligned}
$$

From $2\left\|x_{n}\right\|_{H}^{2} \rightarrow 2 d^{2}$ as $n \rightarrow \infty$, we conclude that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in H.
(ii) Now we assume that the convex set $Q \subset H$ is closed. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in Q with $\left\|x_{n}\right\|_{H} \rightarrow d=\operatorname{dist}(0, Q)$ as $n \rightarrow \infty$. According to (i), it must be a Cauchy sequence. Since H is complete, $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to some $y \in H$. In fact, $y \in Q$ since Q is closed.
Suppose there is another point $\tilde{y} \in Q$ with $\|\tilde{y}\|=d$. Then, again by convexity and the parallelogram identity,

$$
d^{2} \leq\left\|\frac{y+\tilde{y}}{2}\right\|_{H}^{2} \leq\left\|\frac{y+\tilde{y}}{2}\right\|_{H}^{2}+\left\|\frac{y-\tilde{y}}{2}\right\|_{H}^{2}=\frac{1}{2}\|y\|_{H}^{2}+\frac{1}{2}\|\tilde{y}\|_{H}^{2}=d^{2}
$$

and we conclude that all the inequalities are in fact equalities, which implies

$$
\left\|\frac{y-\tilde{y}}{2}\right\|_{H}^{2}=0 .
$$

Thus, $y=\tilde{y}$ and we have proven existence and uniqueness of $y \in Q$ with $\|y\|_{H}=d$.

