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8.1. Duality of sequence spaces 3. Consider the spaces

c0 :=
{

(xk)k∈N ∈ `∞
∣∣∣ lim

k→∞
xk = 0

}
, c :=

{
(xk)k∈N ∈ `∞

∣∣∣ lim
k→∞

xk exists
}
.

(i) Quick warm-up: Is (c0, ‖·‖`∞) a Banach space? Is (c, ‖·‖`∞) a Banach space?

(ii) Show that the dual space of (c0, ‖·‖`∞) is isometrically isomorphic to (`1, ‖·‖`1).

(iii) To which space is the dual space of (c, ‖·‖`∞) isomorphic?

8.2. A result by Lions-Stampacchia 3 u. Let (H, (·, ·)H) be a Hilbert space and let
∅ 6= K ⊂ H be a closed, convex subset. Let f : H → R be a continuous linear functional
and let a : H ×H → R be a bilinear map satisfying

(i) ∀x, y ∈ H : a(x, y) = a(y, x)

(ii) ∃Λ > 0 ∀x, y ∈ H : |a(x, y)| ≤ Λ‖x‖H‖y‖H

(iii) ∃λ > 0 ∀x ∈ H : a(x, x) ≥ λ‖x‖2
H .

Consider the functional J : H → R given by J(x) = a(x, x)− 2f(x) and prove that there
exists a unique y0 ∈ K such that the two following inequalities both hold:

∀y ∈ K : J(y0) ≤ J(y),
∀y ∈ K : a(y0, y − y0) ≥ f(y − y0).

Moreover show that y0 is equal to Px0, where x0 ∈ H is such that f(x) = a(x0, x)
and P : H → K is the operator mapping x ∈ H to the unique point Px ∈ K with
‖x− Px‖H = dist(x,K) (see Problem 7.6 (ii)).

8.3. Projection to convex sets 3. Let (H, (·, ·)H) be a Hilbert space and let ∅ 6=
K ⊂ H be a closed, convex subset. Let P : H → K be the operator which maps x ∈ H
to the unique point Px ∈ K with ‖x− Px‖H = dist(x,K) (see Problem 7.6 (ii)).

(i) For every x1, x2 ∈ H prove the inequality

‖Px1 − Px2‖H ≤ ‖x1 − x2‖H .

Hint. Use Problem 8.2.

(ii) Prove that

K =
⋂

x∈H

{y ∈ H | (Px− x, y − Px)H ≥ 0}.

8.4. Strict convexity L.

Definition. A normed space (X, ‖·‖X) is called strictly convex if ‖λx + (1 − λ)y‖X < 1
holds for all 0 < λ < 1 and all x, y ∈ X with x 6= y and ‖x‖X = 1 = ‖y‖X .
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Let (X, ‖·‖X) be a normed space. The “abundance”-Lemma (Satz 4.2.1) states that

∀x ∈ X ∃x∗ ∈ X∗ : ‖x∗‖2
X∗ = x∗(x) = ‖x‖2

X .

(i) Prove that if X∗ (but not necessarily X) is strictly convex, then for all x ∈ X there
exists a unique x∗ ∈ X∗ with ‖x∗‖2

X∗ = x∗(x) = ‖x‖2
X .

(ii) Find a counterexample for uniqueness of such x∗, if X∗ is not strictly convex.

8.5. Uniform convexity L.

Definition. Let (X, ‖·‖X) be a Banach space and let S = {x ∈ X | ‖x‖X = 1} be the unit
sphere in X. The space (X, ‖·‖X) is called uniformly convex if

∀ε > 0 ∃δ > 0 ∀x, y ∈ S : ‖x− y‖X > ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥
X
< 1− δ.

Remark. Uniform convexity is not to be confused with strict convexity defined in Problem
8.4.

(i) Prove that Hilbert spaces are uniformly convex.

(ii) Provide an example of a Banach space which is not uniformly convex.

8.6. Functional on the span of a sequence L. Let (X, ‖·‖X) be a normed space,
let (xk)k∈N be a sequence in X and (αk)k∈N a sequence in R. Prove that the following
statements are equivalent.

(i) There exists ` ∈ X∗ satisfying `(xk) = αk for every k ∈ N.

(ii) There exists γ > 0 such that for every sequence (βk)k∈N in R and every n ∈ N it
holds ∣∣∣∣ n∑

k=1
βkαk

∣∣∣∣ ≤ γ
∥∥∥∥ n∑

k=1
βkxk

∥∥∥∥
X
.
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8. Solutions

Solution of 8.1:

(i) In Problem 2.4 (i) we have shown that the space (c0, ‖·‖`∞) is complete. To show
completeness of (c, ‖·‖`∞) it suffices to prove that c is closed in `∞. Let x = (xn)n∈N ∈ c.
Then there exists a sequence (x(k))k∈N of sequences x(k) = (x(k)

n )n∈N ∈ c such that

sup
n∈N
|x(k)

n − xn| = ‖x(k) − x‖`∞
k→∞−−−→ 0.

Given ε > 0, let kε ∈ N such that ‖x(kε) − x‖`∞ < ε. By definition, x(kε) ∈ c is a Cauchy
sequence. Let Nε ∈ N such that |x(kε)

n − x(kε)
m | < ε for every m,n ≥ Nε. Then

|xn − xm| ≤ |xn − x(kε)
n |+ |x(kε)

n − x(kε)
m |+ |x(kε)

m − xm| < 3ε

for every m,n ≥ Nε which proves that x is a Cauchy sequence. Therefore, x ∈ c.

(ii) The linear map

Ψ: `1 → c∗0
y = (yn)n∈N 7→ (Ψy : c0 → R)

(xn)n∈N 7→
∑
n∈N

xnyn

is well-defined, since for every y ∈ `1 and every x = (xn)n∈N in (c0, ‖·‖`∞) there holds

|(Ψy)(x)| ≤
∑
n∈N
|xnyn| ≤ ‖x‖`∞‖y‖`1 .

This directly implies ‖Ψy‖c∗0
≤ ‖y‖`1 . We claim ‖Ψy‖c∗0

= ‖y‖`1 for every y ∈ `1. Indeed,
given y ∈ `1 we can apply Ψy to the sequence x(k) = (x(k)

n )n∈N ∈ c0 given by

x(k)
n =


yn

|yn| if n ≤ k and yn 6= 0,
0 else.

and satisfying ‖x(k)‖`∞ = 1 to obtain

lim
k→∞
|Ψ(y)(x(k))| = lim

k→∞

k∑
n=1
|yn| = ‖y‖`1 =⇒ ‖Ψy‖c∗0

= sup
x∈c0

‖x‖`∞=1

|Ψ(y)(x)| ≥ ‖y‖`1 .

Therefore, Ψ is an isometry (it does not change the norm of any y) which also implies
injectivity. To prove that Ψ is surjective, we show first, that every functional f ∈
c∗0 is determined by its values on the elements e(k) = (e(k)

n )n∈N ∈ c0, where e(k) =
(0, . . . , 0, 1, 0, . . .) has 1 at k-th position. Given x = (xn)n∈N ∈ c0, we have

∥∥∥∥x− N∑
k=1

xke
(k)
∥∥∥∥

`∞
= sup

n>N
|xn|

N→∞−−−→ 0.
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Continuity and linearity of f implies

f(x) = lim
N→∞

f
( N∑

k=1
xke

(k)
)

= lim
N→∞

N∑
k=1

xkf(e(k)).

Given f ∈ c∗0 we claim that y := (f(e(k)))k∈N ∈ `1 and Ψy = f . Indeed, for any N ∈ N
N∑

k=1

∣∣∣f(e(k))
∣∣∣ =

∞∑
k=1

x
(N)
k f(e(k)) = f(x(N)) ≤ ‖f‖c∗0

,

where x(N)
k = (x(N)

k )k∈N ∈ c0 with ‖x(N)‖`∞ ≤ 1 is defined by

x
(N)
k =


f(e(k))
|f(e(k))| if k ≤ N and f(e(k)) 6= 0,
0 else.

Since N is arbitrary, we conclude y ∈ `1. Moreover, given any x = (xk)k∈N ∈ c0 and y as
above, we have

(Ψy)(x) =
∑
k∈N

xkyk =
∑
k∈N

xkf(e(k)) = f(x)

which shows that Ψ is surjective and completes the prove that Ψ is a linear, bijective map,
which is an isometry.

(iii) The dual space of (c, ‖·‖`∞) is also isomorphic to c∗0 ∼= `1 but not isometrically. To
construct an isomorphism Φ: c∗ → c∗0, we first consider the linear map

T : c→ c0

x = (xn)n∈N 7→
(

lim
n→∞

xn, (x1 − lim
n→∞

xn), (x2 − lim
n→∞

xn), . . .
)
.

By definition of c and c0, the map T is well-defined. T is continuous since

| lim
n→∞

xn| ≤ ‖x‖`∞ =⇒ ‖Tx‖`∞ ≤ 2‖x‖`∞ .

Moreover, T is invertible with inverse

S : c0 → c

y = (yn)n∈N 7→
(
(y2 + y1), (y3 + y1), (y4 + y1), . . .

)
.

Indeed, STx = x is immediate and TSy = y follows from limn→∞(yn +y1) = y1. Satisfying
‖Sy‖`∞ ≤ 2‖y‖`∞ , the map S is also continuous. We are ready to define

Φ: c∗ → c∗0
f 7→ f ◦ S.

As composition of linear maps, Φ is linear. It is also continuous since

|(Φf)(y)| = |f(Sy)| ≤ ‖f‖c∗‖Sy‖`∞ ≤ 2‖f‖c∗‖y‖`∞ =⇒ ‖Φf‖`∞ ≤ 2‖f‖c∗

=⇒ ‖Φ‖L(c∗,c∗0) ≤ 2.

Finally, by the construction above, Φ bijective with inverse Φ−1 : g 7→ g ◦ T .
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Solution of 8.2:

Claim 1. Given f ∈ H∗, there exists a unique x0 ∈ H such that for all x ∈ H

J(x) := a(x, x)− 2f(x) = a(x− x0, x− x0)− a(x0, x0).

Proof. Since a is bilinear and satisfies (ii) and (iii) the Lax-Milgram Theorem applies.
((ii) implies continuity of a). In particular, since f ∈ H∗, there exists a unique x0 ∈ H
satisfying a(x0, x) = f(x) for all x ∈ H by Korollar 4.3.1. (The same follows from claim 2
below and the Riesz representation theorem applied in (H, a(·, ·))). Moreover,

J(x) = a(x, x)− 2f(x) = a(x, x)− 2a(x0, x)
= a(x− x0, x)− a(x0, x)
= a(x− x0, x− x0) + a(x− x0, x0)− a(x, x0)
= a(x− x0, x− x0)− a(x0, x0).

Claim 2. (H, a(·, ·)) is a Hilbert space.

Proof. By assumption (i) the bilinear map a is symmetric. By (ii) and (iii), we have

λ‖x‖2
H ≤ a(x, x) ≤ Λ‖x‖2

H (∗)

which shows a(x, x) ≥ 0 and a(x, x) = 0 ⇔ x = 0. Therefore, a(·, ·) is a scalar product
on H. In fact, (∗) implies that the induced norm ‖·‖a =

√
a(·, ·) is equivalent to ‖·‖H ,

where we recall the definition of equivalent norms from Problem 1.1. It is easy to check
that equivalent norms have the same Cauchy sequences and induce the same notion of
convergence. Therefore, (H, ‖·‖a) is complete since (H, ‖·‖H) is complete and the claim
follows.

By assumption, the set K ⊂ H is convex and closed in (H, ‖·‖H). Since the two norms
are equivalent, K is also closed in (H, ‖·‖a) and we can apply the result of Problem 7.6
(ii) in the Hilbert space (H, a(·, ·)) with the point x0 from Claim 1. Namely, there exists a
unique y0 ∈ K satisfying

‖x0 − y0‖a = inf
y∈K
‖x0 − y‖a (†)

By Claim 1 we have for arbitrary y ∈ K

J(y0) = ‖y0 − x0‖2
a − ‖x0‖2

a ≤ ‖y − x0‖2
a − ‖x0‖2

a = J(y)

which proves the first inequality.
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The second inequality claims non-negativity of

a(y0, y − y0)− f(y − y0) = a(y0, y − y0)− a(x0, y − y0)
= a(y0 − x0, y − y0) (‡)

for every y ∈ K. Since y0 ∈ K we have ty + (1 − t)y0 ∈ K for every fixed y ∈ K and
every t ∈ [0, 1] by convexity of K. We consider the map g : [0, 1]→ R given by

g(t) =
∥∥∥x0 −

(
ty + (1− t)y0

)∥∥∥2

a
=
∥∥∥x0 − y0 + t(y0 − y)

∥∥∥2

a
.

By definition (†) of y0, and since ty + (1− t)y0 ∈ K by convexity, g has a minimum at
the boundary point t = 0 which implies g′(0) ≥ 0. We compute

g′(t) = 2a
(
x0 − y0 + t(y0 − y), y0 − y

)
,

0 ≤ g′(0) = 2a(x0 − y0, y0 − y) = 2a(y0 − x0, y − y0).

Since y ∈ K is arbitrary, the second inequality follows.

Solution of 8.3:

(i) Given any x0 ∈ H and defining a(·, ·) = (·, ·)H and f(·) = (x0, ·). The second inequality
(‡) proved in Problem 8.2, with y0 = Px0, gives

∀y ∈ K : (Px0 − x0, y − Px0)H ≥ 0. (‡‡)

Now, given x1, x2 ∈ H, we apply inequality (‡‡) twice, first with x0 = x1 ∈ H and
y = Px2 ∈ K and then with x0 = x2 ∈ H and y = Px1 ∈ K to obtain

0 ≤ (Px1 − x1, Px2 − Px1)H + (Px2 − x2, Px1 − Px2)H

= (Px2 − Px1 + x1 − x2, Px1 − Px2)H

= (x1 − x2, Px1 − Px2)H − ‖Px1 − Px2‖2
H ,

=⇒ ‖Px1 − Px2‖2
H ≤ (x1 − x2, Px1 − Px2)H

≤ ‖x1 − x2‖H‖Px1 − Px2‖H ,

=⇒ ‖Px1 − Px2‖H ≤ ‖x1 − x2‖H .

(ii) Let us prove the two inclusions separately.

“⊆” Let y ∈ K. Then (Px− x, y − Px)H ≥ 0 for any x ∈ H by (‡‡).

“⊇” Let y ∈ H \K. Then, choosing x = y, we have Py 6= y which implies

(Py − y, y − Py)H = −‖Py − y‖2
H < 0

and shows that y is not element of the intersection on the right hand side.

Solution of 8.4:
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(i) Given 0 6= x ∈ X, let x∗ ∈ X∗ and y∗ ∈ X∗ satisfy

‖x∗‖2
X∗ = x∗(x) = ‖x‖2

X = y∗(x) = ‖y∗‖2
X∗ .

Then

‖x‖2
X = 1

2
(
x∗(x) + y∗(x)

)
=
(

1
2x
∗ + 1

2y
∗
)
(x) ≤

∥∥∥1
2x
∗ + 1

2y
∗
∥∥∥

X∗
‖x‖X .

We divide by ‖x‖2
X to obtain

1 ≤
∥∥∥∥ x∗

2‖x‖X

+ y∗

2‖x‖X

∥∥∥∥
X∗
,

∥∥∥∥ x∗

‖x‖X

∥∥∥∥
X∗

= ‖x
∗‖X∗

‖x‖X

= 1 =
∥∥∥∥ y∗

‖x‖X

∥∥∥∥
X∗
.

If x∗ 6= y∗ then λ = 1
2 in the definition of strict convexity of X∗ yields the contradiction∥∥∥∥ x∗

2‖x‖X

+ y∗

2‖x‖X

∥∥∥∥
X∗

< 1.

(ii) Consider the space (R2, ‖·‖∞), where we define ‖p‖∞ := max{|p1|, |p2|} for every
p = (p1, p2) ∈ R2. Let x = (1, 1). Then, ‖x‖∞ = 1 and the functionals

x∗ : R2 → R2, y∗ : R2 → R2

(p1, p2) 7→ p1 (p1, p2) 7→ p2

both satisfy x∗(x) = y∗(x) = 1 = ‖x‖2
∞ and

‖x∗‖X∗ = sup
‖p‖∞≤1

|x∗(p)| = sup
|p1|,|p2|≤1

|p1| = 1 = sup
|p1|,|p2|≤1

|p2| = ‖y∗‖X∗ .

Solution of 8.5:

(i) Let (H, (·, ·)) be a Hilbert space. Let ε > 0. For all x, y ∈ H with ‖x‖ = 1 = ‖y‖ and
‖x− y‖ > ε, the parallelogram identity (see Problem 1.2) implies∥∥∥∥x+ y

2

∥∥∥∥2
= 2

∥∥∥∥x2
∥∥∥∥2

+ 2
∥∥∥∥y2
∥∥∥∥2
−
∥∥∥∥x− y2

∥∥∥∥2
<

1
2 + 1

2 −
ε2

4

=⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ (1− ε2

4

) 1
2
.

(ii) We claim that the Banach space (L∞(R), ‖·‖L∞) is not uniformly convex. Consider
the characteristic functions u = χ[0,1] and v = χ[t,1+t] and ε = 1

2 . For any 0 < t < 1, one
has ‖u‖L∞ = 1 = ‖v‖L∞ and ‖u− v‖L∞ = 1 > ε, but ‖1

2(u+ v)‖L∞ = 1.

In analogy to the counterexample in Problem 8.4 (ii), the finite dimensional Banach space
(R2, ‖·‖∞), where we define ‖p‖∞ := max{|p1|, |p2|} for every p = (p1, p2) ∈ R2, is not
uniformly convex. Indeed, given x = (1, 1) and y = (1, 0), we have ‖x‖∞ = 1 = ‖y‖∞ and
‖x− y‖∞ = 1 but ‖1

2(x+ y)‖∞ = ‖(1, 1
2)‖∞ = 1.
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Solution of 8.6: Let (xk)k∈N be a sequence in (X, ‖·‖X) and (αk)k∈N a sequence in R.

“(i)⇒ (ii)” Let (βk)k∈N be any sequence in R. Given ` ∈ X∗ with `(xk) = αk for every
k ∈ N, we can make the following estimate for any n ∈ N.∣∣∣∣ n∑

k=1
βkαk

∣∣∣∣ =
∣∣∣∣`( n∑

k=1
βkxk

)∣∣∣∣ ≤ ‖`‖X∗

∥∥∥∥ n∑
k=1

βkxk

∥∥∥∥
X

and statement (ii) follows with γ = ‖`‖X∗ .

“(ii)⇒ (i)” Every element of the subspace U = span{xk | k ∈ N} ⊂ X is of the form

y =
n∑

k=1
βkxk

(for not necessarily unique n ∈ N and βk ∈ R). However, assumption (ii) implies that

˜̀: U → R

y =
n∑

k=1
βkxk 7→

n∑
k=1

βkαk

is well-defined. In fact, if
n∑

k=1
βkxk =

m∑
k=1

β′kxk,

then, setting N := max{n,m} and βk = 0 for k > n respectively β′k = 0 for k > m,
∣∣∣∣ n∑
k=1

βkαk −
m∑

k=1
β′kαk

∣∣∣∣ =
∣∣∣∣ N∑
k=1

(βk − β′k)αk

∣∣∣∣
≤ γ

∥∥∥∥ N∑
k=1

(βk − β′k)xk

∥∥∥∥
X

= γ

∥∥∥∥ n∑
k=1

βkxk −
m∑

k=1
β′kxk

∥∥∥∥ = 0.

Moreover, assumption (ii) implies that the linear functional ˜̀ is continuous on (U, ‖·‖X)
with ‖˜̀‖U∗ ≤ γ. The Hahn-Banach Theorem implies (Satz 4.1.3) that there exists an
extension ` ∈ X∗ with ‖`‖X∗ = ‖˜̀‖U∗ ≤ γ and `(xk) = ˜̀(xk) = αk for every k ∈ N.
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