9.1. Representation of a convex set \mathfrak{A}_{*}^{\bullet}. Let $(X, \|\cdot\|_X)$ be a normed space and let $\emptyset \neq Q \subset X$ be an open, convex subset containing the origin. Prove that there exists a subset $\Upsilon \subset X^*$ such that

$$Q = \bigcap_{f \in \Upsilon} \{ x \in X \mid f(x) < 1 \},\$$

which means that Q is an intersection of open, affine half-spaces.

9.2. Extremal subsets \square .

Definition. Let X be a vector space and $K \subset X$ any subset. A subset $M \subset K$ is called *extremal subset* of K if

$$\forall x_1, x_0 \in K \quad \forall \lambda \in (0, 1): \quad \left(\lambda x_1 + (1 - \lambda) x_0 \in M \Rightarrow x_1, x_0 \in M\right)$$

If M consists of only one point $M = \{y\}$, we say that y is an *extremal point* of K.

Let X be vector space and let $K \subset X$ be a convex subset with more than one element.

- (i) Assume $K \subset \mathbb{R}^2$ is also closed. Prove that the set E of all extremal points of K is closed.
- (ii) Is the statement of (i) also true in \mathbb{R}^3 ?
- (iii) Given an extremal subset $M \subset K$ of K, prove that $K \setminus M$ is convex.
- (iv) Prove that $y \in K$ is an extremal point of K if and only if $K \setminus \{y\}$ is convex.
- (v) If $N \subset K$ and $K \setminus N$ are both convex, does it follow that N is extremal?

9.3. Weak sequential continuity of linear operators \mathbb{C} . Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and let $T: X \to Y$ be a linear operator. Prove that the following statements are equivalent.

- (i) T is continuous.
- (ii) For every sequence $(x_n)_{n \in \mathbb{N}}$ in X, weak convergence $x_n \xrightarrow{w} x$ in X for $n \to \infty$ implies weak convergence $Tx_n \xrightarrow{w} Tx$ in Y for $n \to \infty$.

9.4. Weak convergence in finite dimensions \mathbb{Z} . Let $(X, \|\cdot\|_X)$ be a normed space of *finite* dimension dim $X = d < \infty$. Let $x \in X$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. Prove that weak convergence $x_n \xrightarrow{w} x$ for $n \to \infty$ implies $\|x_n - x\|_X \to 0$ for $n \to \infty$.

9.5. Weak convergence in Hilbert spaces \mathfrak{D} . Let $(H, (\cdot, \cdot)_H)$ be a real, infinite dimensional Hilbert space. Let $x \in H$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in H.

(i) Prove that weak convergence $x_n \xrightarrow{w} x$ in H and convergence of the norms $||x_n||_H \to ||x||_H$ in \mathbb{R} implies (strong) convergence $x_n \to x$ in H, i. e. $||x_n - x||_H \to 0$.

- (ii) Suppose $x_n \xrightarrow{w} x$ and $||y_n y||_H \to 0$, where $(y_n)_{n \in \mathbb{N}}$ is another sequence in H and $y \in H$. Prove that $(x_n, y_n)_H \to (x, y)_H$.
- (iii) Let $(e_n)_{n\in\mathbb{N}}$ be an orthonormal system of $(H, (\cdot, \cdot)_H)$. Prove $e_n \xrightarrow{w} 0$ as $n \to \infty$.
- (iv) Given any $x \in H$ with $||x||_H \leq 1$, prove that there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in H satisfying $||x_n||_H = 1$ for all $n \in \mathbb{N}$ and $x_n \xrightarrow{w} x$ as $n \to \infty$.
- (v) Let the functions $f_n: [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for $n \in \mathbb{N}$. Prove that $f_n \xrightarrow{w} 0$ in $L^2([0, 2\pi])$ as $n \to \infty$.

9.6. Sequential closure \mathfrak{C} . Let X be a set and τ a topology on X. Given a subset $\Omega \subset X$, we use the notation

$$\overline{\Omega}_{\tau} := \bigcap_{\substack{A \supset \Omega, \\ X \setminus A \in \tau}} A$$

for the closure of Ω in the topology τ and

$$\overline{\Omega}_{\tau\text{-seq}} := \{ x \in X \mid \exists (x_n)_{n \in \mathbb{N}} \text{ in } \Omega : x_n \xrightarrow{\tau} x \text{ as } n \to \infty \}$$

for the sequential closure of Ω induced by the topology τ , which is based on the notion of convergence in topological spaces:

 $(x_n \xrightarrow{\tau} x) \quad \Leftrightarrow \quad (\forall U \in \tau, \ x \in U \quad \exists N \in \mathbb{N} \quad \forall n \ge N : \quad x_n \in U).$

- (i) Prove that if $A \subset X$ is closed, then A is sequentially closed. Deduce the inclusion $\overline{\Omega}_{\tau-\text{seq}} \subset \overline{\Omega}_{\tau}$ for any subset $\Omega \subset X$.
- (ii) Let $(X, \tau) = (\ell^2, \tau_w)$, where τ_w denotes the weak topology on ℓ^2 . Find a set $\Omega \subset \ell^2$ for which the inclusion $\overline{\Omega}_{w-\text{seq}} \subset \overline{\Omega}_w$ proven in (i) is strict.

9.7. Convex hull **\$\$**.

Definition. Let $(X, \|\cdot\|_X)$ be a normed space. The convex hull of $A \subset X$ is defined as

$$\operatorname{conv}(A) := \bigcap_{\substack{B \supset A, \\ B \text{ convex}}} B$$

Recall the following representation theorem for convex hulls

$$\operatorname{conv}(A) = \left\{ \sum_{k=1}^{n} \lambda_k x_k \mid n \in \mathbb{N}, \ x_1, \dots, x_n \in A, \ \lambda_1, \dots, \lambda_n \ge 0, \ \sum_{k=1}^{n} \lambda_k = 1 \right\}.$$

(i) Using the representation of the convex hull above, prove Mazur's Lemma: If $(x_k)_{k\in\mathbb{N}}$ is a sequence in X satisfying $x_k \xrightarrow{w} x$ as $k \to \infty$, then there exists a sequence $(y_n)_{n\in\mathbb{N}}$ of convex linear combinations

$$y_n = \sum_{k=1}^{c(n)} a_{kn} x_k, \quad c(n) \in \mathbb{N}, \quad a_{kn} \ge 0 \text{ for } k = 1, \dots, c(n), \quad \sum_{k=1}^{c(n)} a_{kn} = 1,$$

such that $||y_n - x||_X \to 0$ as $n \to \infty$.

(ii) Let $(X, \|\cdot\|_X)$ be a normed space and let $A, B \subset X$ be compact, convex subsets. Using the representation of the convex hull above, prove that $\operatorname{conv}(A \cup B)$ is compact.

9. Solutions

Solution of 9.1: Given the normed space $(X, \|\cdot\|_X)$, the non-trivial, open, convex subset $Q \subset X$ and the Minkowski functional

$$p \colon X \to \mathbb{R}$$
$$x \mapsto \inf\{\lambda > 0 \mid \frac{1}{\lambda} x \in Q\},$$

we define the set

$$\Upsilon := \{f \in X^* \mid \forall x \in X: f(x) \le p(x)\}$$

and claim that

$$Q = \bigcap_{f \in \Upsilon} \{ x \in X \mid f(x) < 1 \}.$$

" \subseteq " Let $x \in Q$. Since Q is open, we have p(x) < 1. For every $f \in \Upsilon$ we have $f(x) \le p(x)$ by definition. This proves f(x) < 1 for every $f \in \Upsilon$.

" \supseteq " Suppose $x_0 \notin Q$. We hope to find some $f \in \Upsilon$ with $f(x_0) \ge 1$. Towards that end, we define the functional

$$\ell \colon \operatorname{span}(\{x_0\}) \to \mathbb{R}$$
$$tx_0 \mapsto t.$$

Since Q is convex and contains the origin, we have $p(x_0) \ge 1$. In particular, we have

$$\forall t \ge 0 : \quad \ell(tx_0) = t \le t \, p(x_0) = p(tx_0), \\ \forall t < 0 : \quad \ell(tx_0) = t < 0 \le p(tx_0).$$

The Hahn-Banach theorem implies that there exists a linear functional $f: X \to \mathbb{R}$ which agrees with ℓ on span($\{x_0\}$) and satisfies $f(x) \leq p(x)$ for every $x \in X$. Is f continuous? Since Q is open and contains the origin, there exists r > 0 such that $B_r(0) \subset Q$. Thus, $\frac{1}{\lambda}x \in Q$ with $\lambda = \frac{2}{r} ||x||_X$ and the definition of p implies that

$$f(x) \le p(x) \le \frac{2}{r} \|x\|_X$$

which yields that f is continuous and therefore $f \in \Upsilon$. Since $f(x_0) = 1$, the claim follows.

Solution of 9.2:

(i) It is clear that the set E of extremal points of the closed, convex subset $K \subset \mathbb{R}^2$ must be a subset of the boundary ∂K of K because the center of every ball contained in K is a convex combination of other points in this ball.

Let $(y_n)_{n \in \mathbb{N}}$ be a sequence in E which converges to some $y \in K$. Suppose $y \notin E$. Then there exist distinct points $x_1, x_0 \in K$ and some $0 < \lambda < 1$ such that $\lambda x_1 + (1 - \lambda)x_0 = y$. For any $n \in \mathbb{N}$, the point y_n is extremal and therefore cannot lie on the segment between x_1 and x_0 . Intuitively, the sequence $(y_n)_{n\in\mathbb{N}}$ must approach y from "above" or "below" this segment. By restriction to a subsequence, we can assume that all y_n strictly lie on the same side of the affine line through x_1 and x_2 . By convexity of K, the triangle $D = \operatorname{conv}\{x_1, x_0, y_1\}$ is a subset of K. The arguments above and the convergence $y_n \to y$ imply that for $n \in \mathbb{N}$ sufficiently large, y_n is in the interior of D and thus in the interior of K. This however contradicts $y_n \in E \subset \partial K$. We conclude $y \in E$ which proves that Eis closed.

(ii) The set of extremal points of a closed, convex subset in \mathbb{R}^3 is not necessarily closed: Let $S = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ and $p_{\pm} = (0, 1, \pm 1)$. The set of extremal points of $\operatorname{conv}(S \cup \{p_+, p_-\})$ is $E = \{p_+, p_-\} \cup S \setminus p_0$, where $p_0 = (0, 1, 0) = \frac{1}{2}p_+ + \frac{1}{2}p_-$.

(iii) Let $K \subset X$ be convex and $M \subset K$ an extremal subset of K. Suppose, $K \setminus M$ is not convex. Then there are points $x_1, x_0 \in K \setminus M$ such that $x := \lambda x_1 + (1 - \lambda) x_0 \notin K \setminus M$ for some $0 < \lambda < 1$. Since K is convex, $x \in K$ and hence $x \in M$. However, this contradicts $x_1, x_0 \notin M$ by definition of extremal subset.

(iv) If $y \in K$ is an extremal point of K, then $\{y\} \subset K$ is an extremal subset of K and (iii) implies that $K \setminus \{y\}$ is convex. Conversely, if $y \in K$ is not an extremal point of K, then by definition there exist $x_1, x_0 \in K \setminus \{y\}$ and some $0 < \lambda < 1$ such that $y = \lambda x_1 + (1 - \lambda)x_0$ which shows that $K \setminus \{y\}$ is not convex.

(v) No, the interval $K = [-1, 1] \subset \mathbb{R}$, the subset $N = [-1, 0] \subset K$ and the difference $K \setminus N = (0, 1]$ are all convex but N is not an extremal subset of K since $\frac{1}{2} \cdot (-1) + \frac{1}{2} \cdot 1 = 0 \in N$ but $1 \notin N$.

Solution of 9.3:

"(i) \Rightarrow (ii)" Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $x_n \xrightarrow{w} x$ for some $x \in X$. Let $f \in Y^*$ be arbitrary. If $T: X \to Y$ is a continuous linear operator, then $f \circ T \in X^*$ and weak convergence of $(x_n)_{n \in \mathbb{N}}$ implies

$$\lim_{n \to \infty} f(Tx_n) = \lim_{n \to \infty} (f \circ T)(x_n) = (f \circ T)(x) = f(Tx),$$

which proves weak convergence of $(Tx_n)_{n \in \mathbb{N}}$ in Y.

"(ii) \Rightarrow (i)" If the linear operator $T: X \to Y$ is not continuous, then there exists a sequence $(x_n)_{n\in\mathbb{N}}$ in X such that $||x_n||_X \leq 1$ and $||Tx_n||_Y \geq n^2$ for every $n \in \mathbb{N}$. Then $\frac{1}{n}x_n \to 0$ in X (in particular weakly) but $(T(\frac{1}{n}x_n))_{n\in\mathbb{N}}$ is unbounded in Y and therefore cannot be weakly convergent (Satz 4.6.1.).

Solution of 9.4: Let e_1, \ldots, e_d be a basis for the finite dimensional normed space $(X, \|\cdot\|_X)$. Then, every element $x \in X$ is of the form $x = \sum_{k=1}^d x^k e_k$ for uniquely determined $x^1, \ldots, x^d \in \mathbb{R}$ (the superscripts are upper indices, not exponents). For $k \in \{1, \ldots, d\}$ we consider the linear maps $e_k^* \colon X \to \mathbb{R}$ given by $e_k^*(x) = x^k$. In fact, $e_k^* \in X^*$ since $|e_k^*(x)| = |x^k| \leq ||x||_1$, where $||x||_1 \coloneqq \sum_{k=1}^d |x^k|$ defines a norm on X which must be equivalent to $\|\cdot\|_X$ since X is finite dimensional.

If $(x_n)_{n\in\mathbb{N}}$ is a sequence in X such that $x_n \xrightarrow{w} x$ for some $x \in X$ as $n \to \infty$, then

$$\forall k \in \{1, \dots, d\}: \quad \lim_{n \to \infty} x_n^k = \lim_{n \to \infty} e_k^*(x_n) = e_k^*(x) = x^k.$$

This implies $||x_n - x||_1 \to 0$ and by equivalence of norms $||x_n - x||_X \to 0$ as $n \to \infty$.

Solution of 9.5:

(i) Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in the Hilbert space $(H, (\cdot, \cdot)_H)$ such that $x_n \xrightarrow{w} x$ for some $x \in H$ and such that $||x_n||_H \to ||x||_H$ as $n \to \infty$. Since $(x, \cdot)_H \in H^*$, weak convergence implies $(x, x_n)_H \to (x, x)_H = ||x||_H^2$ as $n \to \infty$ and we have

$$||x_n - x||_H^2 = (x_n - x, x_n - x)_H = ||x_n||_H^2 - 2(x, x_n)_H + ||x||_H^2 \xrightarrow{n \to \infty} 0.$$

(ii) Let $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\in\mathbb{N}}$ be sequences in H and $x, y \in H$ such that $x_n \stackrel{\text{w}}{\rightarrow} x$ and $\|y_n - y\|_H \to 0$ as $n \to \infty$. Weak convergence $x_n \stackrel{\text{w}}{\rightarrow} x$ implies in particular, that $(x_n, y)_H \to (x, y)_H$ as $n \to \infty$ and that there exists a finite constant C such that $\|x_n\|_H \leq C$ for all $n \in \mathbb{N}$. Thus,

$$\begin{aligned} \left| (x_n, y_n)_H - (x, y)_H \right| &= \left| (x_n, y_n - y)_H + (x_n, y)_H - (x, y)_H \right| \\ &\leq C \|y_n - y\|_H + \left| (x_n, y)_H - (x, y)_H \right| \xrightarrow{n \to \infty} 0. \end{aligned}$$

(iii) Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal system of the infinite dimensional Hilbert space $(H, (\cdot, \cdot)_H)$. Then, Bessel's inequality

$$\sum_{n=0}^{\infty} |(x, e_n)_H|^2 \le ||x||_H^2$$

implies $(x, e_n)_H \to 0$ as $n \to \infty$ for any $x \in H$. Since by the Riesz representation theorem any $f \in H^*$ satisfies $f(e_n) = (x, e_n)_H$ for a unique $x \in H$, we obtain $e_n \xrightarrow{w} 0$.

(iv) Let $x \in H$ satisfy $||x||_H \leq 1$. If x = 0, then any orthonormal system converges weakly to x by (iii). If $x \neq 0$, then an orthonormal system $(e_n)_{n \in \mathbb{N}}$ of H with $e_1 = ||x||_H^{-1}x$ can be constructed via the Gram-Schmidt algorithm. For $n \in \mathbb{N}$, let

$$x_n := x + \left(\sqrt{1 - \|x\|_H^2}\right)e_{n+1}$$

Then, since $x \perp e_{n+1}$, we have $||x_n||^2 = ||x||_H^2 + (1 - ||x||_H^2) = 1$ for every $n \in \mathbb{N}$. Moreover, $x_n \stackrel{\text{w}}{\rightarrow} x$ follows from $e_{n+1} \stackrel{\text{w}}{\rightarrow} 0$ as $n \to \infty$ by (iii).

(v) Given $f_n: [0, 2\pi] \to \mathbb{R}$ as in the statement, $(\sqrt{\frac{1}{\pi}}f_n)_{n \in \mathbb{N}}$ is an orthonormal system of $L^2([0, 2\pi])$, because

$$\int_0^{2\pi} \sin(mt) \sin(nt) dt = \frac{1}{2} \int_0^{2\pi} \cos\left((m-n)t\right) - \cos\left((m+n)t\right) dt$$
$$= \begin{cases} 0, \text{ if } m \neq n, \\ \pi, \text{ if } m = n \end{cases}$$

holds for any $m, n \in \mathbb{N}$. By (iii) weak convergence $f_n \xrightarrow{w} 0$ as $n \to \infty$ follows.

Solution of 9.6:

(i) Let (X, τ) be a topological space and let $A \subset X$ be closed. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in A such that $x_n \xrightarrow{\tau} x$ as $n \to \infty$ for some $x \in X$. Suppose $x \notin A$. Then, $U := X \setminus A$ is an open set in τ containing x. Convergence $x_n \xrightarrow{\tau} x$ implies that there exists $N \in \mathbb{N}$ such that $x_N \in U$. This however contradicts $x_N \in A$. Thus, $x \in A$ and we have proven that Ais sequentially closed.

The set $\overline{\Omega}_{\tau} \subset X$ is closed, hence it is sequentially closed thanks to the first part of the exercise. Moreover $\overline{\Omega}_{\tau}$ contains Ω and thus $\overline{\Omega}_{\tau-\text{seq}} \subset \overline{\Omega}_{\tau}$, since every $x \in \overline{\Omega}_{\tau-\text{seq}}$ is the limit of a sequence $(x_n)_{n \in \mathbb{N}} \subset \Omega$ and $\overline{\Omega}_{\tau}$ is sequentially closed.

(ii) We construct a set $\Omega \subset \ell^2$ such that $(0) \in \overline{\Omega}_w$ but no sequences in Ω converge weakly to zero, i.e. $(0) \notin \overline{\Omega}_{w-seq}$. (Here we denote $(0) := (0, 0, \ldots) \in \ell^2$.)

For $n \in \mathbb{N}$ and $2 \leq m \in \mathbb{N}$, let $x^{(n,m)} = (\frac{1}{n}, 0, \dots, 0, n, 0, \dots) \in \ell^2$, where the entry "n" is at *m*-th position. By the Riesz representation theorem, any $f \in (\ell^2)^*$ is of the form $f = (\cdot, y)_{\ell^2}$ for some $y \in \ell^2$. For any $y \in \ell^2$ and any $2 \leq m, n \in \mathbb{N}$, we have

$$(x^{(n,m)}, y)_{\ell^2} = \frac{1}{n} y_1 + n y_m.$$
(*)

Define $\Omega = \{x^{(n,m)} \mid n, m \in \mathbb{N}, m \geq 2\}$. Let $(x^{(n_k,m_k)})_{k \in \mathbb{N}}$ be any (fixed) sequence in Ω . Towards a contradiction, suppose $x^{(n_k,m_k)} \stackrel{\text{w}}{\to} (0)$ as $k \to \infty$. From (*) we conclude $n_k \to \infty$ and $m_k \to \infty$ as $k \to \infty$. (Note that for $y \in \ell^2$ we have $y_m \to 0$ as $m \to \infty$.) But then $\|x^{(n_k,m_k)}\|_{\ell^2}^2 = n_k^{-2} + n_k^2 \to \infty$ as $k \to \infty$ and we derived a contradiction to the fact, that $(x^{(n_k,m_k)})_{k \in \mathbb{N}}$ being a weakly convergent sequence must be bounded.

Now suppose by contradiction that $(0) \notin \overline{\Omega}_{w}$. Then there exists a weak neighbourhood Vof $(0) \in \ell^{2}$ such that $V \subset \ell^{2} \setminus \overline{\Omega}_{w}$. By definition of weak topology, there exist finitely many open sets $U_{1}, \ldots, U_{r} \subset \mathbb{R}$ and elements $y^{(1)}, \ldots, y^{(r)} \in \ell^{2}$, where $y^{(k)} = (y_{j}^{(k)})_{j \in \mathbb{N}}$ such that

$$V \supset \bigcap_{k=1}^{\prime} \{ x \in \ell^2 \mid (x, y^{(k)})_{\ell^2} \in U_k \} \ni (0).$$

In particular we have $0 \in U_k$ for every $k \in \{1, \ldots, r\}$. Since every U_k is open and r is finite, there exists $\varepsilon > 0$ such that $(-\varepsilon, \varepsilon) \subset U_k$ for every $k \in \{1, \ldots, r\}$. However, if we fix $n \in \mathbb{N}$ such that $\frac{1}{n}|y_1^{(k)}| < \frac{\varepsilon}{2}$ and then choose $2 \leq m \in \mathbb{N}$ large enough such that $n|y_m^{(k)}| < \frac{\varepsilon}{2}$ for each of the finitely many $k \in \{1, \ldots, r\}$, we have

$$|(x^{(n,m)}, y^{(k)})_{\ell^2}| \le \frac{1}{n} |y_1^{(k)}| + n |y_m^{(k)}| < \varepsilon \qquad \forall k \in \{1, \dots, r\}$$

which implies $x^{(n,m)} \in V$. As $x^{(n,m)} \in \Omega$, a contradiction to the definition of V arises.

Solution of 9.7: For completeness, we first prove the representation of the convex hull in the statement.

Lemma. The following representation theorem for convex hulls holds

$$\operatorname{conv}(A) = \left\{ \sum_{k=1}^{n} \lambda_k x_k \mid n \in \mathbb{N}, \ x_1, \dots, x_n \in A, \ \lambda_1, \dots, \lambda_n \ge 0, \ \sum_{k=1}^{n} \lambda_k = 1 \right\}.$$

Proof. Given the normed space $(X, \|\cdot\|_X)$ and the subset $A \subset X$, let

$$\mathcal{C} := \Big\{ \sum_{k=1}^n \lambda_k x_k \ \Big| \ n \in \mathbb{N}, \ x_1, \dots, x_n \in A, \ \lambda_1, \dots, \lambda_n \ge 0, \ \sum_{k=1}^n \lambda_k = 1 \Big\}.$$

We prove $\operatorname{conv}(A) = \mathcal{C}$ by showing the two inclusions.

" \subseteq " Since $A \subset C$, the inclusion conv $(A) \subseteq C$ follows from the definition of convex hull, if we show that C is convex. In fact, given 0 < t < 1 we have

$$t\sum_{k=1}^{n}\lambda_{k}x_{k} + (1-t)\sum_{k=1}^{m}\lambda'_{k}x'_{k} = \sum_{k=1}^{n+m}\mu_{k}y_{k}$$

with

$$0 \le \mu_k := \begin{cases} t\lambda_k & \text{if } k \in \{1, \dots, n\}, \\ (1-t)\lambda'_{k-n} & \text{if } k \in \{n+1, \dots, n+m\} \end{cases}$$
$$A \ni y_k := \begin{cases} x_k & \text{if } k \in \{1, \dots, n\}, \\ x'_{k-n} & \text{if } k \in \{n+1, \dots, n+m\} \end{cases}$$

and $\mu_1 + \ldots + \mu_{n+m} = t(\lambda_1 + \ldots + \lambda_n) + (1-t)(\lambda'_1 + \ldots + \lambda'_m) = t + (1-t) = 1.$

" \supseteq " Let $x_1, \ldots, x_n \in A$ and let $\lambda_1, \ldots, \lambda_n \ge 0$ with $\lambda_1 + \ldots + \lambda_n = 1$. We can assume $\lambda_1 \ne 0$. Since conv(A) is convex and contains $x_1, x_2 \in A$, and since $\frac{\lambda_1}{\lambda_1 + \lambda_2} + \frac{\lambda_2}{\lambda_1 + \lambda_2} = 1$,

$$\operatorname{conv}(A) \ni \frac{\lambda_1}{\lambda_1 + \lambda_2} x_1 + \frac{\lambda_2}{\lambda_1 + \lambda_2} x_2 = \frac{\lambda_1 x_1 + \lambda_2 x_2}{\lambda_1 + \lambda_2} =: y_2.$$

For the same reason,

$$\operatorname{conv}(A) \ni \frac{\lambda_1 + \lambda_2}{\lambda_1 + \lambda_2 + \lambda_3} y_2 + \frac{\lambda_3}{\lambda_1 + \lambda_2 + \lambda_3} x_3 = \frac{\lambda_1 x_2 + \lambda_2 x_2 + \lambda_3 x_3}{\lambda_1 + \lambda_2 + \lambda_3} =: y_3.$$

Iterating this procedure, we obtain

$$\operatorname{conv}(A) \ni \frac{\lambda_1 + \ldots + \lambda_{k-1}}{\lambda_1 + \ldots + \lambda_k} y_{k-1} + \frac{\lambda_k}{\lambda_1 + \ldots + \lambda_k} x_k = \frac{\lambda_1 x_1 + \ldots + \lambda_k x_k}{\lambda_1 + \ldots + \lambda_k} =: y_k.$$

for every $k \in \{3, \ldots, n\}$. Since $\lambda_1 + \ldots + \lambda_n = 1$, we have $y_n = \lambda_1 x_1 + \ldots + \lambda_n x_n$ which concludes the proof of $\operatorname{conv}(A) \supseteq C$.

(i) Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in X and let $x \in X$ such that $x_k \stackrel{w}{\rightarrow} x$ as $k \to \infty$. Let $K := \operatorname{conv}(\{x_k \mid k \in \mathbb{N}\})$. By Problem 9.7, $K \subset \overline{K} \subset \overline{K}_{w-\operatorname{seq}} \subset \overline{K}_w$ but since K is convex, the closure \overline{K} with respect to $\|\cdot\|_X$ agrees with the closure \overline{K}_w with respect to the weak topology: $\overline{K} = \overline{K}_w$. Therefore, the assumption that x is in the weak-sequential closure $\overline{K}_{w-\operatorname{seq}} \ni x$ implies $x \in \overline{K}$ and there exists a sequence $(y_n)_{n\in\mathbb{N}}$ in K such that $\|y_n - x\|_X \to 0$ as $n \to \infty$. By the representation theorem for convex hulls, each element $y_n \in K$ must be a convex linear combination of finitely many elements of $\{x_k \mid k \in \mathbb{N}\}$, which concludes the proof.

(ii) Given the normed space $(X, \|\cdot\|_X)$, the convex subsets $A, B \subset X$ and defining $\Delta := \{(s,t) \in \mathbb{R}^2 \mid s+t=1, s, t \geq 0\}$, we claim that

$$\operatorname{conv}(A \cup B) = \mathcal{D} := \bigcup_{(s,t) \in \triangle} (sA + tB)$$

" \subseteq " By choosing (s,t) = (1,0) we see $A \subset \mathcal{D}$. Analogously, $B \subset \mathcal{D}$, hence $A \cup B \subset \mathcal{D}$. If $x \in (\operatorname{conv}(A \cup B)) \setminus (A \cup B)$, then the representation theorem for convex hulls implies that x is of the form

$$x = \sum_{k=1}^{j} s_k a_k + \sum_{k=j+1}^{n} t_k b_k,$$

where $0 \leq j \leq n \in \mathbb{N}$, where $a_k \in A$, $s_k \geq 0$ for all $k = 1, \ldots, j$ and $b_k \in B$, $t_k \geq 0$ for every $k = j + 1, \ldots, n$, and where $s_1 + \ldots + s_j + t_{j+1} + \ldots + t_n = 1$. Since $x \notin A \cup B$ by assumption, we have

$$s := \sum_{k=1}^{j} s_k > 0,$$
 $t := \sum_{k=j+1}^{n} t_k > 0,$

with s + t = 1. Since A and B are both convex by assumption,

$$a := \frac{1}{s} \sum_{k=1}^{j} s_k a_k \in A,$$
 $b := \frac{1}{t} \sum_{k=j+1}^{n} t_k b_k \in B,$

and we have shown $x = sa + tb \in \mathcal{D}$.

"⊇" Let $a \in A$ and $b \in B$. Then $a, b \in \operatorname{conv}(A \cup B)$. Since $\operatorname{conv}(A \cup B)$ is convex, we must have $sa + tb \in \operatorname{conv}(A \cup B)$ for every $(s, t) \in \Delta$. This proves $\operatorname{conv}(A \cup B) \supseteq \mathcal{D}$.

Under the assumption that the convex sets A and B are compact, we show now that

$$\mathcal{D} = \bigcup_{(s,t) \in \triangle} (sA + tB)$$

is compact. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{D} . Then there exist $a_n \in A$ and $b_n \in B$ as well as $(s_n, t_n) \in \Delta$ such that $x_n = s_n a_n + t_n b_n$ for every $n \in \mathbb{N}$. We argue in 3 steps:

- Since \triangle is compact in \mathbb{R}^2 , a subsequence $((s_n, t_n))_{n \in \Lambda_1 \subset \mathbb{N}}$ converges in \triangle .
- Since A is compact in X, a subsequence $(a_n)_{n \in \Lambda_2 \subset \Lambda_1}$ converges in A.
- Since B is compact in X, a subsequence $(b_n)_{n \in \Lambda_3 \subset \Lambda_2}$ converges in B.

Therefore, the subsequence $(x_n)_{n \in \Lambda_3}$ converges in \mathcal{D} which concludes the proof.