9.1. Representation of a convex set Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $\emptyset \neq Q \subset X$ be an open, convex subset containing the origin. Prove that there exists a subset $\Upsilon \subset X^{*}$ such that

$$
Q=\bigcap_{f \in \Upsilon}\{x \in X \mid f(x)<1\},
$$

which means that Q is an intersection of open, affine half-spaces.

9.2. Extremal subsets

Definition. Let X be a vector space and $K \subset X$ any subset. A subset $M \subset K$ is called extremal subset of K if

$$
\forall x_{1}, x_{0} \in K \quad \forall \lambda \in(0,1): \quad\left(\lambda x_{1}+(1-\lambda) x_{0} \in M \Rightarrow x_{1}, x_{0} \in M\right)
$$

If M consists of only one point $M=\{y\}$, we say that y is an extremal point of K.
Let X be vector space and let $K \subset X$ be a convex subset with more than one element.
(i) Assume $K \subset \mathbb{R}^{2}$ is also closed. Prove that the set E of all extremal points of K is closed.
(ii) Is the statement of (i) also true in \mathbb{R}^{3} ?
(iii) Given an extremal subset $M \subset K$ of K, prove that $K \backslash M$ is convex.
(iv) Prove that $y \in K$ is an extremal point of K if and only if $K \backslash\{y\}$ is convex.
(v) If $N \subset K$ and $K \backslash N$ are both convex, does it follow that N is extremal?
9.3. Weak sequential continuity of linear operators. Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces and let $T: X \rightarrow Y$ be a linear operator. Prove that the following statements are equivalent.
(i) T is continuous.
(ii) For every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X, weak convergence $x_{n} \xrightarrow{\mathrm{w}} x$ in X for $n \rightarrow \infty$ implies weak convergence $T x_{n} \xrightarrow{\mathrm{w}} T x$ in Y for $n \rightarrow \infty$.
9.4. Weak convergence in finite dimensions . Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space of finite dimension $\operatorname{dim} X=d<\infty$. Let $x \in X$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X. Prove that weak convergence $x_{n} \stackrel{\mathrm{w}}{\longrightarrow} x$ for $n \rightarrow \infty$ implies $\left\|x_{n}-x\right\|_{X} \rightarrow 0$ for $n \rightarrow \infty$.
9.5. Weak convergence in Hilbert spaces Let $\left(H,(\cdot, \cdot)_{H}\right)$ be a real, infinite dimensional Hilbert space. Let $x \in H$ and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in H.
(i) Prove that weak convergence $x_{n} \xrightarrow{\mathrm{w}} x$ in H and convergence of the norms $\left\|x_{n}\right\|_{H} \rightarrow$ $\|x\|_{H}$ in \mathbb{R} implies (strong) convergence $x_{n} \rightarrow x$ in H, i.e. $\left\|x_{n}-x\right\|_{H} \rightarrow 0$.
(ii) Suppose $x_{n} \xrightarrow{\mathrm{w}} x$ and $\left\|y_{n}-y\right\|_{H} \rightarrow 0$, where $\left(y_{n}\right)_{n \in \mathbb{N}}$ is another sequence in H and $y \in H$. Prove that $\left(x_{n}, y_{n}\right)_{H} \rightarrow(x, y)_{H}$.
(iii) Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal system of $\left(H,(\cdot, \cdot)_{H}\right)$. Prove $e_{n} \xrightarrow{\mathbf{w}} 0$ as $n \rightarrow \infty$.
(iv) Given any $x \in H$ with $\|x\|_{H} \leq 1$, prove that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in H satisfying $\left\|x_{n}\right\|_{H}=1$ for all $n \in \mathbb{N}$ and $x_{n} \xrightarrow{\mathrm{w}} x$ as $n \rightarrow \infty$.
(v) Let the functions $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ be given by $f_{n}(t)=\sin (n t)$ for $n \in \mathbb{N}$. Prove that $f_{n} \xrightarrow{\mathrm{w}} 0$ in $L^{2}([0,2 \pi])$ as $n \rightarrow \infty$.
9.6. Sequential closure . Let X be a set and τ a topology on X. Given a subset $\Omega \subset X$, we use the notation

$$
\bar{\Omega}_{\tau}:=\bigcap_{\substack{A \supset \Omega, X \backslash A \in \tau}} A
$$

for the closure of Ω in the topology τ and

$$
\bar{\Omega}_{\tau-\text { seq }}:=\left\{x \in X \mid \exists\left(x_{n}\right)_{n \in \mathbb{N}} \text { in } \Omega: x_{n} \xrightarrow{\tau} x \text { as } n \rightarrow \infty\right\}
$$

for the sequential closure of Ω induced by the topology τ, which is based on the notion of convergence in topological spaces:

$$
\left(x_{n} \xrightarrow{\tau} x\right) \quad \Leftrightarrow \quad\left(\forall U \in \tau, x \in U \quad \exists N \in \mathbb{N} \quad \forall n \geq N: \quad x_{n} \in U\right) .
$$

(i) Prove that if $A \subset X$ is closed, then A is sequentially closed. Deduce the inclusion $\bar{\Omega}_{\tau \text {-seq }} \subset \bar{\Omega}_{\tau}$ for any subset $\Omega \subset X$.
(ii) Let $(X, \tau)=\left(\ell^{2}, \tau_{\mathrm{w}}\right)$, where τ_{w} denotes the weak topology on ℓ^{2}. Find a set $\Omega \subset \ell^{2}$ for which the inclusion $\bar{\Omega}_{\mathrm{w} \text {-seq }} \subset \bar{\Omega}_{\mathrm{w}}$ proven in (i) is strict.

9.7. Convex hull 踣.

Definition. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. The convex hull of $A \subset X$ is defined as

$$
\operatorname{conv}(A):=\bigcap_{\substack{B \supset A, B \text { convex }}} B
$$

Recall the following representation theorem for convex hulls

$$
\operatorname{conv}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\}
$$

(i) Using the representation of the convex hull above, prove Mazur's Lemma: If $\left(x_{k}\right)_{k \in \mathbb{N}}$ is a sequence in X satisfying $x_{k} \xrightarrow{\mathbf{W}} x$ as $k \rightarrow \infty$, then there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of convex linear combinations

$$
y_{n}=\sum_{k=1}^{c(n)} a_{k n} x_{k}, \quad c(n) \in \mathbb{N}, \quad a_{k n} \geq 0 \text { for } k=1, \ldots, c(n), \quad \sum_{k=1}^{c(n)} a_{k n}=1,
$$

such that $\left\|y_{n}-x\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$.
(ii) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let $A, B \subset X$ be compact, convex subsets. Using the representation of the convex hull above, prove that $\operatorname{conv}(A \cup B)$ is compact.

9. Solutions

Solution of 9.1: Given the normed space $\left(X,\|\cdot\|_{X}\right)$, the non-trivial, open, convex subset $Q \subset X$ and the Minkowski functional

$$
\begin{aligned}
p: X & \rightarrow \mathbb{R} \\
x & \mapsto \inf \left\{\lambda>0 \left\lvert\, \frac{1}{\lambda} x \in Q\right.\right\},
\end{aligned}
$$

we define the set

$$
\Upsilon:=\left\{f \in X^{*} \mid \forall x \in X: f(x) \leq p(x)\right\}
$$

and claim that

$$
Q=\bigcap_{f \in \Upsilon}\{x \in X \mid f(x)<1\} .
$$

" \subseteq " Let $x \in Q$. Since Q is open, we have $p(x)<1$. For every $f \in \Upsilon$ we have $f(x) \leq p(x)$ by definition. This proves $f(x)<1$ for every $f \in \Upsilon$.
" \supseteq " Suppose $x_{0} \notin Q$. We hope to find some $f \in \Upsilon$ with $f\left(x_{0}\right) \geq 1$. Towards that end, we define the functional

$$
\begin{aligned}
\ell: \operatorname{span}\left(\left\{x_{0}\right\}\right) & \rightarrow \mathbb{R} \\
t x_{0} & \mapsto t
\end{aligned}
$$

Since Q is convex and contains the origin, we have $p\left(x_{0}\right) \geq 1$. In particular, we have

$$
\begin{array}{ll}
\forall t \geq 0: & \ell\left(t x_{0}\right)=t \leq t p\left(x_{0}\right)=p\left(t x_{0}\right), \\
\forall t<0: & \ell\left(t x_{0}\right)=t<0 \leq p\left(t x_{0}\right) .
\end{array}
$$

The Hahn-Banach theorem implies that there exists a linear functional $f: X \rightarrow \mathbb{R}$ which agrees with ℓ on $\operatorname{span}\left(\left\{x_{0}\right\}\right)$ and satisfies $f(x) \leq p(x)$ for every $x \in X$. Is f continuous? Since Q is open and contains the origin, there exists $r>0$ such that $B_{r}(0) \subset Q$. Thus, $\frac{1}{\lambda} x \in Q$ with $\lambda=\frac{2}{r}\|x\|_{X}$ and the definition of p implies that

$$
f(x) \leq p(x) \leq \frac{2}{r}\|x\|_{X}
$$

which yields that f is continuous and therefore $f \in \Upsilon$. Since $f\left(x_{0}\right)=1$, the claim follows.

Solution of 9.2:

(i) It is clear that the set E of extremal points of the closed, convex subset $K \subset \mathbb{R}^{2}$ must be a subset of the boundary ∂K of K because the center of every ball contained in K is a convex combination of other points in this ball.

Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in E which converges to some $y \in K$. Suppose $y \notin E$. Then there exist distinct points $x_{1}, x_{0} \in K$ and some $0<\lambda<1$ such that $\lambda x_{1}+(1-\lambda) x_{0}=y$. For any $n \in \mathbb{N}$, the point y_{n} is extremal and therefore cannot lie on the segment between
x_{1} and x_{0}. Intuitively, the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ must approach y from "above" or "below" this segment. By restriction to a subsequence, we can assume that all y_{n} strictly lie on the same side of the affine line through x_{1} and x_{2}. By convexity of K, the triangle $D=\operatorname{conv}\left\{x_{1}, x_{0}, y_{1}\right\}$ is a subset of K. The arguments above and the convergence $y_{n} \rightarrow y$ imply that for $n \in \mathbb{N}$ sufficiently large, y_{n} is in the interior of D and thus in the interior of K. This however contradicts $y_{n} \in E \subset \partial K$. We conclude $y \in E$ which proves that E is closed.

(ii) The set of extremal points of a closed, convex subset in \mathbb{R}^{3} is not necessarily closed: Let $S=\left\{(x, y, 0) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$ and $p_{ \pm}=(0,1, \pm 1)$. The set of extremal points of $\operatorname{conv}\left(S \cup\left\{p_{+}, p_{-}\right\}\right)$is $E=\left\{p_{+}, p_{-}\right\} \cup S \backslash p_{0}$, where $p_{0}=(0,1,0)=\frac{1}{2} p_{+}+\frac{1}{2} p_{-}$.

(iii) Let $K \subset X$ be convex and $M \subset K$ an extremal subset of K. Suppose, $K \backslash M$ is not convex. Then there are points $x_{1}, x_{0} \in K \backslash M$ such that $x:=\lambda x_{1}+(1-\lambda) x_{0} \notin K \backslash M$ for some $0<\lambda<1$. Since K is convex, $x \in K$ and hence $x \in M$. However, this contradicts $x_{1}, x_{0} \notin M$ by definition of extremal subset.
(iv) If $y \in K$ is an extremal point of K, then $\{y\} \subset K$ is an extremal subset of K and (iii) implies that $K \backslash\{y\}$ is convex. Conversely, if $y \in K$ is not an extremal point of K, then by definition there exist $x_{1}, x_{0} \in K \backslash\{y\}$ and some $0<\lambda<1$ such that $y=\lambda x_{1}+(1-\lambda) x_{0}$ which shows that $K \backslash\{y\}$ is not convex.
(v) No, the interval $K=[-1,1] \subset \mathbb{R}$, the subset $N=[-1,0] \subset K$ and the difference $K \backslash N=(0,1]$ are all convex but N is not an extremal subset of K since $\frac{1}{2} \cdot(-1)+\frac{1}{2} \cdot 1=$ $0 \in N$ but $1 \notin N$.

Solution of 9.3:

"(i) \Rightarrow (ii)" Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in X such that $x_{n} \xrightarrow{\mathbf{W}} x$ for some $x \in X$. Let $f \in Y^{*}$ be arbitrary. If $T: X \rightarrow Y$ is a continuous linear operator, then $f \circ T \in X^{*}$ and weak convergence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ implies

$$
\lim _{n \rightarrow \infty} f\left(T x_{n}\right)=\lim _{n \rightarrow \infty}(f \circ T)\left(x_{n}\right)=(f \circ T)(x)=f(T x),
$$

which proves weak convergence of $\left(T x_{n}\right)_{n \in \mathbb{N}}$ in Y.
"(ii) \Rightarrow (i)" If the linear operator $T: X \rightarrow Y$ is not continuous, then there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X such that $\left\|x_{n}\right\|_{X} \leq 1$ and $\left\|T x_{n}\right\|_{Y} \geq n^{2}$ for every $n \in \mathbb{N}$. Then $\frac{1}{n} x_{n} \rightarrow 0$ in X (in particular weakly) but $\left(T\left(\frac{1}{n} x_{n}\right)\right)_{n \in \mathbb{N}}$ is unbounded in Y and therefore cannot be weakly convergent (Satz 4.6.1.).

Solution of 9.4: Let e_{1}, \ldots, e_{d} be a basis for the finite dimensional normed space $\left(X,\|\cdot\|_{X}\right)$. Then, every element $x \in X$ is of the form $x=\sum_{k=1}^{d} x^{k} e_{k}$ for uniquely determined $x^{1}, \ldots, x^{d} \in \mathbb{R}$ (the superscripts are upper indices, not exponents). For $k \in\{1, \ldots, d\}$ we consider the linear maps $e_{k}^{*}: X \rightarrow \mathbb{R}$ given by $e_{k}^{*}(x)=x^{k}$. In fact, $e_{k}^{*} \in X^{*}$ since $\left|e_{k}^{*}(x)\right|=\left|x^{k}\right| \leq\|x\|_{1}$, where $\|x\|_{1}:=\sum_{k=1}^{d}\left|x^{k}\right|$ defines a norm on X which must be equivalent to $\|\cdot\|_{X}$ since X is finite dimensional.
If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X such that $x_{n} \xrightarrow{\mathbf{w}} x$ for some $x \in X$ as $n \rightarrow \infty$, then

$$
\forall k \in\{1, \ldots, d\}: \quad \lim _{n \rightarrow \infty} x_{n}^{k}=\lim _{n \rightarrow \infty} e_{k}^{*}\left(x_{n}\right)=e_{k}^{*}(x)=x^{k}
$$

This implies $\left\|x_{n}-x\right\|_{1} \rightarrow 0$ and by equivalence of norms $\left\|x_{n}-x\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$.

Solution of 9.5:

(i) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in the Hilbert space $\left(H,(\cdot, \cdot)_{H}\right)$ such that $x_{n} \xrightarrow{\mathrm{w}} x$ for some $x \in H$ and such that $\left\|x_{n}\right\|_{H} \rightarrow\|x\|_{H}$ as $n \rightarrow \infty$. Since $(x, \cdot)_{H} \in H^{*}$, weak convergence implies $\left(x, x_{n}\right)_{H} \rightarrow(x, x)_{H}=\|x\|_{H}^{2}$ as $n \rightarrow \infty$ and we have

$$
\left\|x_{n}-x\right\|_{H}^{2}=\left(x_{n}-x, x_{n}-x\right)_{H}=\left\|x_{n}\right\|_{H}^{2}-2\left(x, x_{n}\right)_{H}+\|x\|_{H}^{2} \xrightarrow{n \rightarrow \infty} 0 .
$$

(ii) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ be sequences in H and $x, y \in H$ such that $x_{n} \xrightarrow{\mathbf{w}} x$ and $\left\|y_{n}-y\right\|_{H} \rightarrow 0$ as $n \rightarrow \infty$. Weak convergence $x_{n} \xrightarrow{\mathbf{w}} x$ implies in particular, that $\left(x_{n}, y\right)_{H} \rightarrow(x, y)_{H}$ as $n \rightarrow \infty$ and that there exists a finite constant C such that $\left\|x_{n}\right\|_{H} \leq C$ for all $n \in \mathbb{N}$. Thus,

$$
\begin{aligned}
\left|\left(x_{n}, y_{n}\right)_{H}-(x, y)_{H}\right| & =\left|\left(x_{n}, y_{n}-y\right)_{H}+\left(x_{n}, y\right)_{H}-(x, y)_{H}\right| \\
& \leq C\left\|y_{n}-y\right\|_{H}+\left|\left(x_{n}, y\right)_{H}-(x, y)_{H}\right| \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

(iii) Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal system of the infinite dimensional Hilbert space $\left(H,(\cdot, \cdot)_{H}\right)$. Then, Bessel's inequality

$$
\sum_{n=0}^{\infty}\left|\left(x, e_{n}\right)_{H}\right|^{2} \leq\|x\|_{H}^{2}
$$

implies $\left(x, e_{n}\right)_{H} \rightarrow 0$ as $n \rightarrow \infty$ for any $x \in H$. Since by the Riesz representation theorem any $f \in H^{*}$ satisfies $f\left(e_{n}\right)=\left(x, e_{n}\right)_{H}$ for a unique $x \in H$, we obtain $e_{n} \xrightarrow{\mathrm{w}} 0$.
(iv) Let $x \in H$ satisfy $\|x\|_{H} \leq 1$. If $x=0$, then any orthonormal system converges weakly to x by (iii). If $x \neq 0$, then an orthonormal system $\left(e_{n}\right)_{n \in \mathbb{N}}$ of H with $e_{1}=\|x\|_{H}^{-1} x$ can be constructed via the Gram-Schmidt algorithm. For $n \in \mathbb{N}$, let

$$
x_{n}:=x+\left(\sqrt{1-\|x\|_{H}^{2}}\right) e_{n+1}
$$

Then, since $x \perp e_{n+1}$, we have $\left\|x_{n}\right\|^{2}=\|x\|_{H}^{2}+\left(1-\|x\|_{H}^{2}\right)=1$ for every $n \in \mathbb{N}$. Moreover, $x_{n} \xrightarrow{\mathrm{w}} x$ follows from $e_{n+1} \xrightarrow{\mathrm{w}} 0$ as $n \rightarrow \infty$ by (iii).
(v) Given $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ as in the statement, $\left(\sqrt{\frac{1}{\pi}} f_{n}\right)_{n \in \mathbb{N}}$ is an orthonormal system of $L^{2}([0,2 \pi])$, because

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (m t) \sin (n t) \mathrm{d} t & =\frac{1}{2} \int_{0}^{2 \pi} \cos ((m-n) t)-\cos ((m+n) t) \mathrm{d} t \\
& = \begin{cases}0, \text { if } m \neq n, \\
\pi, & \text { if } m=n\end{cases}
\end{aligned}
$$

holds for any $m, n \in \mathbb{N}$. By (iii) weak convergence $f_{n} \xrightarrow{\mathbf{w}} 0$ as $n \rightarrow \infty$ follows.

Solution of 9.6:

(i) Let (X, τ) be a topological space and let $A \subset X$ be closed. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in A such that $x_{n} \xrightarrow{\tau} x$ as $n \rightarrow \infty$ for some $x \in X$. Suppose $x \notin A$. Then, $U:=X \backslash A$ is an open set in τ containing x. Convergence $x_{n} \xrightarrow{\tau} x$ implies that there exists $N \in \mathbb{N}$ such that $x_{N} \in U$. This however contradicts $x_{N} \in A$. Thus, $x \in A$ and we have proven that A is sequentially closed.
The set $\bar{\Omega}_{\tau} \subset X$ is closed, hence it is sequentially closed thanks to the first part of the exercise. Moreover $\bar{\Omega}_{\tau}$ contains Ω and thus $\bar{\Omega}_{\tau \text {-seq }} \subset \bar{\Omega}_{\tau}$, since every $x \in \bar{\Omega}_{\tau \text {-seq }}$ is the limit of a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subset \Omega$ and $\bar{\Omega}_{\tau}$ is sequentially closed.
(ii) We construct a set $\Omega \subset \ell^{2}$ such that (0$) \in \bar{\Omega}_{\mathrm{w}}$ but no sequences in Ω converge weakly to zero, i.e. $(0) \notin \bar{\Omega}_{\text {w-seq. }}$. (Here we denote $(0):=(0,0, \ldots) \in \ell^{2}$.)
For $n \in \mathbb{N}$ and $2 \leq m \in \mathbb{N}$, let $x^{(n, m)}=\left(\frac{1}{n}, 0, \ldots, 0, n, 0, \ldots\right) \in \ell^{2}$, where the entry " n " is at m-th position. By the Riesz representation theorem, any $f \in\left(\ell^{2}\right)^{*}$ is of the form $f=(\cdot, y)_{\ell^{2}}$ for some $y \in \ell^{2}$. For any $y \in \ell^{2}$ and any $2 \leq m, n \in \mathbb{N}$, we have

$$
\begin{equation*}
\left(x^{(n, m)}, y\right)_{\ell^{2}}=\frac{1}{n} y_{1}+n y_{m} . \tag{*}
\end{equation*}
$$

Define $\Omega=\left\{x^{(n, m)} \mid n, m \in \mathbb{N}, m \geq 2\right\}$. Let $\left(x^{\left(n_{k}, m_{k}\right)}\right)_{k \in \mathbb{N}}$ be any (fixed) sequence in Ω. Towards a contradiction, suppose $x^{\left(n_{k}, m_{k}\right)} \xrightarrow{\mathrm{w}}(0)$ as $k \rightarrow \infty$. From ($*$) we conclude $n_{k} \rightarrow \infty$ and $m_{k} \rightarrow \infty$ as $k \rightarrow \infty$. (Note that for $y \in \ell^{2}$ we have $y_{m} \rightarrow 0$ as $m \rightarrow \infty$.) But then $\left\|x^{\left(n_{k}, m_{k}\right)}\right\|_{\ell^{2}}^{2}=n_{k}^{-2}+n_{k}^{2} \rightarrow \infty$ as $k \rightarrow \infty$ and we derived a contradiction to the fact, that $\left(x^{\left(n_{k}, m_{k}\right)}\right)_{k \in \mathbb{N}}$ being a weakly convergent sequence must be bounded.
Now suppose by contradiction that $(0) \notin \bar{\Omega}_{\mathrm{w}}$. Then there exists a weak neighbourhood V of $(0) \in \ell^{2}$ such that $V \subset \ell^{2} \backslash \bar{\Omega}_{\mathrm{w}}$. By definition of weak topology, there exist finitely many open sets $U_{1}, \ldots, U_{r} \subset \mathbb{R}$ and elements $y^{(1)}, \ldots, y^{(r)} \in \ell^{2}$, where $y^{(k)}=\left(y_{j}^{(k)}\right)_{j \in \mathbb{N}}$ such that

$$
V \supset \bigcap_{k=1}^{r}\left\{x \in \ell^{2} \mid\left(x, y^{(k)}\right)_{\ell^{2}} \in U_{k}\right\} \ni(0) .
$$

In particular we have $0 \in U_{k}$ for every $k \in\{1, \ldots, r\}$. Since every U_{k} is open and r is finite, there exists $\varepsilon>0$ such that $(-\varepsilon, \varepsilon) \subset U_{k}$ for every $k \in\{1, \ldots, r\}$. However, if we fix $n \in \mathbb{N}$ such that $\frac{1}{n}\left|y_{1}^{(k)}\right|<\frac{\varepsilon}{2}$ and then choose $2 \leq m \in \mathbb{N}$ large enough such that $n\left|y_{m}^{(k)}\right|<\frac{\varepsilon}{2}$ for each of the finitely many $k \in\{1, \ldots, r\}$, we have

$$
\left|\left(x^{(n, m)}, y^{(k)}\right)_{\ell^{2}}\right| \leq \frac{1}{n}\left|y_{1}^{(k)}\right|+n\left|y_{m}^{(k)}\right|<\varepsilon \quad \forall k \in\{1, \ldots, r\}
$$

which implies $x^{(n, m)} \in V$. As $x^{(n, m)} \in \Omega$, a contradiction to the definition of V arises.
Solution of 9.7: For completeness, we first prove the representation of the convex hull in the statement.

Lemma. The following representation theorem for convex hulls holds

$$
\operatorname{conv}(A)=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\} .
$$

Proof. Given the normed space $\left(X,\|\cdot\|_{X}\right)$ and the subset $A \subset X$, let

$$
\mathcal{C}:=\left\{\sum_{k=1}^{n} \lambda_{k} x_{k} \mid n \in \mathbb{N}, x_{1}, \ldots, x_{n} \in A, \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{k=1}^{n} \lambda_{k}=1\right\} .
$$

We prove $\operatorname{conv}(A)=\mathcal{C}$ by showing the two inclusions.
" \subseteq " Since $A \subset \mathcal{C}$, the inclusion $\operatorname{conv}(A) \subseteq \mathcal{C}$ follows from the definition of convex hull, if we show that \mathcal{C} is convex. In fact, given $0<t<1$ we have

$$
t \sum_{k=1}^{n} \lambda_{k} x_{k}+(1-t) \sum_{k=1}^{m} \lambda_{k}^{\prime} x_{k}^{\prime}=\sum_{k=1}^{n+m} \mu_{k} y_{k}
$$

with

$$
\begin{aligned}
& 0 \leq \mu_{k}:= \begin{cases}t \lambda_{k} & \text { if } k \in\{1, \ldots, n\}, \\
(1-t) \lambda_{k-n}^{\prime} & \text { if } k \in\{n+1, \ldots, n+m\}\end{cases} \\
& A \ni y_{k}:= \begin{cases}x_{k} & \text { if } k \in\{1, \ldots, n\}, \\
x_{k-n}^{\prime} & \text { if } k \in\{n+1, \ldots, n+m\}\end{cases}
\end{aligned}
$$

and $\mu_{1}+\ldots+\mu_{n+m}=t\left(\lambda_{1}+\ldots+\lambda_{n}\right)+(1-t)\left(\lambda_{1}^{\prime}+\ldots+\lambda_{m}^{\prime}\right)=t+(1-t)=1$.
" \supseteq " Let $x_{1}, \ldots, x_{n} \in A$ and let $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ with $\lambda_{1}+\ldots+\lambda_{n}=1$. We can assume $\lambda_{1} \neq 0$. Since $\operatorname{conv}(A)$ is convex and contains $x_{1}, x_{2} \in A$, and since $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}=1$,

$$
\operatorname{conv}(A) \ni \frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} x_{1}+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} x_{2}=\frac{\lambda_{1} x_{1}+\lambda_{2} x_{2}}{\lambda_{1}+\lambda_{2}}=: y_{2} .
$$

For the same reason,

$$
\operatorname{conv}(A) \ni \frac{\lambda_{1}+\lambda_{2}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} y_{2}+\frac{\lambda_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}} x_{3}=\frac{\lambda_{1} x_{2}+\lambda_{2} x_{2}+\lambda_{3} x_{3}}{\lambda_{1}+\lambda_{2}+\lambda_{3}}=: y_{3} .
$$

Iterating this procedure, we obtain

$$
\operatorname{conv}(A) \ni \frac{\lambda_{1}+\ldots+\lambda_{k-1}}{\lambda_{1}+\ldots+\lambda_{k}} y_{k-1}+\frac{\lambda_{k}}{\lambda_{1}+\ldots+\lambda_{k}} x_{k}=\frac{\lambda_{1} x_{1}+\ldots+\lambda_{k} x_{k}}{\lambda_{1}+\ldots+\lambda_{k}}=: y_{k} .
$$

for every $k \in\{3, \ldots, n\}$. Since $\lambda_{1}+\ldots+\lambda_{n}=1$, we have $y_{n}=\lambda_{1} x_{1}+\ldots+\lambda_{n} x_{n}$ which concludes the proof of $\operatorname{conv}(A) \supseteq \mathcal{C}$.
(i) Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence in X and let $x \in X$ such that $x_{k} \xrightarrow{\mathbf{w}} x$ as $k \rightarrow \infty$. Let $K:=\operatorname{conv}\left(\left\{x_{k} \mid k \in \mathbb{N}\right\}\right)$. By Problem 9.7, $K \subset \bar{K} \subset \bar{K}_{\text {w-seq }} \subset \bar{K}_{\mathrm{w}}$ but since K is convex, the closure \bar{K} with respect to $\|\cdot\|_{X}$ agrees with the closure \bar{K}_{w} with respect to the weak topology: $\bar{K}=\bar{K}_{\mathrm{w}}$. Therefore, the assumption that x is in the weak-sequential closure $\bar{K}_{\text {w-seq }} \ni x$ implies $x \in \bar{K}$ and there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ in K such that $\left\|y_{n}-x\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$. By the representation theorem for convex hulls, each element $y_{n} \in K$ must be a convex linear combination of finitely many elements of $\left\{x_{k} \mid k \in \mathbb{N}\right\}$, which concludes the proof.
(ii) Given the normed space $\left(X,\|\cdot\|_{X}\right)$, the convex subsets $A, B \subset X$ and defining $\triangle:=\left\{(s, t) \in \mathbb{R}^{2} \mid s+t=1, s, t \geq 0\right\}$, we claim that

$$
\operatorname{conv}(A \cup B)=\mathcal{D}:=\bigcup_{(s, t) \in \Delta}(s A+t B)
$$

" \subseteq " By choosing $(s, t)=(1,0)$ we see $A \subset \mathcal{D}$. Analogously, $B \subset \mathcal{D}$, hence $A \cup B \subset \mathcal{D}$. If $x \in(\operatorname{conv}(A \cup B)) \backslash(A \cup B)$, then the representation theorem for convex hulls implies that x is of the form

$$
x=\sum_{k=1}^{j} s_{k} a_{k}+\sum_{k=j+1}^{n} t_{k} b_{k},
$$

where $0 \leq j \leq n \in \mathbb{N}$, where $a_{k} \in A, s_{k} \geq 0$ for all $k=1, \ldots, j$ and $b_{k} \in B, t_{k} \geq 0$ for every $k=j+1, \ldots, n$, and where $s_{1}+\ldots+s_{j}+t_{j+1}+\ldots+t_{n}=1$. Since $x \notin A \cup B$ by assumption, we have

$$
s:=\sum_{k=1}^{j} s_{k}>0, \quad t:=\sum_{k=j+1}^{n} t_{k}>0
$$

with $s+t=1$. Since A and B are both convex by assumption,

$$
a:=\frac{1}{s} \sum_{k=1}^{j} s_{k} a_{k} \in A, \quad b:=\frac{1}{t} \sum_{k=j+1}^{n} t_{k} b_{k} \in B
$$

and we have shown $x=s a+t b \in \mathcal{D}$.
" \supseteq " Let $a \in A$ and $b \in B$. Then $a, b \in \operatorname{conv}(A \cup B)$. Since $\operatorname{conv}(A \cup B)$ is convex, we must have $s a+t b \in \operatorname{conv}(A \cup B)$ for every $(s, t) \in \triangle$. This proves $\operatorname{conv}(A \cup B) \supseteq \mathcal{D}$.
Under the assumption that the convex sets A and B are compact, we show now that

$$
\mathcal{D}=\bigcup_{(s, t) \in \Delta}(s A+t B)
$$

is compact. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathcal{D}. Then there exist $a_{n} \in A$ and $b_{n} \in B$ as well as $\left(s_{n}, t_{n}\right) \in \triangle$ such that $x_{n}=s_{n} a_{n}+t_{n} b_{n}$ for every $n \in \mathbb{N}$. We argue in 3 steps:

- Since \triangle is compact in \mathbb{R}^{2}, a subsequence $\left(\left(s_{n}, t_{n}\right)\right)_{n \in \Lambda_{1} \subset \mathbb{N}}$ converges in \triangle.
- Since A is compact in X, a subsequence $\left(a_{n}\right)_{n \in \Lambda_{2} \subset \Lambda_{1}}$ converges in A.
- Since B is compact in X, a subsequence $\left(b_{n}\right)_{n \in \Lambda_{3} \subset \Lambda_{2}}$ converges in B.

Therefore, the subsequence $\left(x_{n}\right)_{n \in \Lambda_{3}}$ converges in \mathcal{D} which concludes the proof.

