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9.1. Representation of a convex set 3. Let (X, ‖·‖X) be a normed space and let
∅ 6= Q ⊂ X be an open, convex subset containing the origin. Prove that there exists a
subset Υ ⊂ X∗ such that

Q =
⋂
f∈Υ
{x ∈ X | f(x) < 1},

which means that Q is an intersection of open, affine half-spaces.

9.2. Extremal subsets L.

Definition. Let X be a vector space and K ⊂ X any subset. A subset M ⊂ K is called
extremal subset of K if

∀x1, x0 ∈ K ∀λ ∈ (0, 1) :
(
λx1 + (1− λ)x0 ∈M ⇒ x1, x0 ∈M

)
If M consists of only one point M = {y}, we say that y is an extremal point of K.

Let X be vector space and let K ⊂ X be a convex subset with more than one element.

(i) Assume K ⊂ R2 is also closed. Prove that the set E of all extremal points of K is
closed.

(ii) Is the statement of (i) also true in R3?

(iii) Given an extremal subset M ⊂ K of K, prove that K \M is convex.

(iv) Prove that y ∈ K is an extremal point of K if and only if K \ {y} is convex.

(v) If N ⊂ K and K \N are both convex, does it follow that N is extremal?

9.3. Weak sequential continuity of linear operators L. Let (X, ‖·‖X) and (Y, ‖·‖Y )
be normed spaces and let T : X → Y be a linear operator. Prove that the following
statements are equivalent.

(i) T is continuous.

(ii) For every sequence (xn)n∈N in X, weak convergence xn w
⇁ x in X for n→∞ implies

weak convergence Txn w
⇁ Tx in Y for n→∞.

9.4. Weak convergence in finite dimensions L. Let (X, ‖·‖X) be a normed space of
finite dimension dimX = d <∞. Let x ∈ X and let (xn)n∈N be a sequence in X. Prove
that weak convergence xn w

⇁ x for n→∞ implies ‖xn − x‖X → 0 for n→∞.

9.5. Weak convergence in Hilbert spaces L. Let (H, (·, ·)H) be a real, infinite
dimensional Hilbert space. Let x ∈ H and let (xn)n∈N be a sequence in H.

(i) Prove that weak convergence xn w
⇁ x in H and convergence of the norms ‖xn‖H →

‖x‖H in R implies (strong) convergence xn → x in H, i. e. ‖xn − x‖H → 0.
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(ii) Suppose xn w
⇁ x and ‖yn − y‖H → 0, where (yn)n∈N is another sequence in H and

y ∈ H. Prove that (xn, yn)H → (x, y)H .

(iii) Let (en)n∈N be an orthonormal system of (H, (·, ·)H). Prove en w
⇁ 0 as n→∞.

(iv) Given any x ∈ H with ‖x‖H ≤ 1, prove that there exists a sequence (xn)n∈N in H
satisfying ‖xn‖H = 1 for all n ∈ N and xn w

⇁ x as n→∞.

(v) Let the functions fn : [0, 2π]→ R be given by fn(t) = sin(nt) for n ∈ N. Prove that
fn

w
⇁ 0 in L2([0, 2π]) as n→∞.

9.6. Sequential closure L. Let X be a set and τ a topology on X. Given a subset
Ω ⊂ X, we use the notation

Ωτ :=
⋂
A⊃Ω,
X\A∈τ

A

for the closure of Ω in the topology τ and
Ωτ -seq := {x ∈ X | ∃(xn)n∈N in Ω : xn

τ−→ x as n→∞}
for the sequential closure of Ω induced by the topology τ , which is based on the notion of
convergence in topological spaces:

(xn τ−→ x) ⇔ (∀U ∈ τ, x ∈ U ∃N ∈ N ∀n ≥ N : xn ∈ U).
(i) Prove that if A ⊂ X is closed, then A is sequentially closed. Deduce the inclusion

Ωτ -seq ⊂ Ωτ for any subset Ω ⊂ X.

(ii) Let (X, τ) = (`2, τw), where τw denotes the weak topology on `2. Find a set Ω ⊂ `2

for which the inclusion Ωw-seq ⊂ Ωw proven in (i) is strict. u

9.7. Convex hull 3.

Definition. Let (X, ‖·‖X) be a normed space. The convex hull of A ⊂ X is defined as
conv(A) :=

⋂
B⊃A,

B convex

B

Recall the following representation theorem for convex hulls

conv(A) =
{ n∑
k=1

λkxk

∣∣∣∣ n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑
k=1

λk = 1
}
.

(i) Using the representation of the convex hull above, prove Mazur’s Lemma: If (xk)k∈N
is a sequence in X satisfying xk w

⇁ x as k →∞, then there exists a sequence (yn)n∈N
of convex linear combinations

yn =
c(n)∑
k=1

aknxk, c(n) ∈ N, akn ≥ 0 for k = 1, . . . , c(n),
c(n)∑
k=1

akn = 1,

such that ‖yn − x‖X → 0 as n→∞.

(ii) Let (X, ‖·‖X) be a normed space and let A,B ⊂ X be compact, convex subsets.
Using the representation of the convex hull above, prove that conv(A∪B) is compact.
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9. Solutions

Solution of 9.1: Given the normed space (X, ‖·‖X), the non-trivial, open, convex subset
Q ⊂ X and the Minkowski functional

p : X → R
x 7→ inf{λ > 0 | 1

λ
x ∈ Q},

we define the set

Υ := {f ∈ X∗ | ∀x ∈ X : f(x) ≤ p(x)}

and claim that

Q =
⋂
f∈Υ
{x ∈ X | f(x) < 1}.

“⊆” Let x ∈ Q. Since Q is open, we have p(x) < 1. For every f ∈ Υ we have f(x) ≤ p(x)
by definition. This proves f(x) < 1 for every f ∈ Υ.

“⊇” Suppose x0 /∈ Q. We hope to find some f ∈ Υ with f(x0) ≥ 1. Towards that end,
we define the functional

` : span({x0})→ R
tx0 7→ t.

Since Q is convex and contains the origin, we have p(x0) ≥ 1. In particular, we have

∀t ≥ 0 : `(tx0) = t ≤ t p(x0) = p(tx0),
∀t < 0 : `(tx0) = t < 0 ≤ p(tx0).

The Hahn-Banach theorem implies that there exists a linear functional f : X → R which
agrees with ` on span({x0}) and satisfies f(x) ≤ p(x) for every x ∈ X. Is f continuous?
Since Q is open and contains the origin, there exists r > 0 such that Br(0) ⊂ Q. Thus,
1
λ
x ∈ Q with λ = 2

r
‖x‖X and the definition of p implies that

f(x) ≤ p(x) ≤ 2
r
‖x‖X

which yields that f is continuous and therefore f ∈ Υ. Since f(x0) = 1, the claim follows.

Solution of 9.2:

(i) It is clear that the set E of extremal points of the closed, convex subset K ⊂ R2 must
be a subset of the boundary ∂K of K because the center of every ball contained in K is a
convex combination of other points in this ball.

Let (yn)n∈N be a sequence in E which converges to some y ∈ K. Suppose y /∈ E. Then
there exist distinct points x1, x0 ∈ K and some 0 < λ < 1 such that λx1 + (1− λ)x0 = y.
For any n ∈ N, the point yn is extremal and therefore cannot lie on the segment between
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x1 and x0. Intuitively, the sequence (yn)n∈N must approach y from “above” or “below”
this segment. By restriction to a subsequence, we can assume that all yn strictly lie
on the same side of the affine line through x1 and x2. By convexity of K, the triangle
D = conv{x1, x0, y1} is a subset of K. The arguments above and the convergence yn → y
imply that for n ∈ N sufficiently large, yn is in the interior of D and thus in the interior
of K. This however contradicts yn ∈ E ⊂ ∂K. We conclude y ∈ E which proves that E
is closed.

•
x1

•
x0

•
y

•y1

••
•
•
•
•

•

D

(ii) The set of extremal points of a closed, convex subset in R3 is not necessarily closed:
Let S = {(x, y, 0) ∈ R3 | x2 + y2 = 1} and p± = (0, 1,±1). The set of extremal points of
conv(S ∪ {p+, p−}) is E = {p+, p−} ∪ S \ p0, where p0 = (0, 1, 0) = 1

2p+ + 1
2p−.

x

y

z

•
p+

•
p−

•
p0

S

(iii) Let K ⊂ X be convex and M ⊂ K an extremal subset of K. Suppose, K \M is not
convex. Then there are points x1, x0 ∈ K \M such that x := λx1 + (1−λ)x0 /∈ K \M for
some 0 < λ < 1. Since K is convex, x ∈ K and hence x ∈M . However, this contradicts
x1, x0 /∈M by definition of extremal subset.

(iv) If y ∈ K is an extremal point of K, then {y} ⊂ K is an extremal subset of K and (iii)
implies that K \{y} is convex. Conversely, if y ∈ K is not an extremal point of K, then by
definition there exist x1, x0 ∈ K \ {y} and some 0 < λ < 1 such that y = λx1 + (1− λ)x0
which shows that K \ {y} is not convex.

(v) No, the interval K = [−1, 1] ⊂ R, the subset N = [−1, 0] ⊂ K and the difference
K \N = (0, 1] are all convex but N is not an extremal subset of K since 1

2 · (−1) + 1
2 · 1 =

0 ∈ N but 1 /∈ N .
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Solution of 9.3:

“(i)⇒ (ii)” Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed spaces. Let (xn)n∈N be a sequence
in X such that xn w

⇁ x for some x ∈ X. Let f ∈ Y ∗ be arbitrary. If T : X → Y is a
continuous linear operator, then f ◦ T ∈ X∗ and weak convergence of (xn)n∈N implies

lim
n→∞

f(Txn) = lim
n→∞

(f ◦ T )(xn) = (f ◦ T )(x) = f(Tx),

which proves weak convergence of (Txn)n∈N in Y .

“(ii)⇒ (i)” If the linear operator T : X → Y is not continuous, then there exists a
sequence (xn)n∈N in X such that ‖xn‖X ≤ 1 and ‖Txn‖Y ≥ n2 for every n ∈ N. Then
1
n
xn → 0 in X (in particular weakly) but (T ( 1

n
xn))n∈N is unbounded in Y and therefore

cannot be weakly convergent (Satz 4.6.1.).

Solution of 9.4: Let e1, . . . , ed be a basis for the finite dimensional normed space
(X, ‖·‖X). Then, every element x ∈ X is of the form x = ∑d

k=1 x
kek for uniquely

determined x1, . . . , xd ∈ R (the superscripts are upper indices, not exponents). For
k ∈ {1, . . . , d} we consider the linear maps e∗k : X → R given by e∗k(x) = xk. In fact,
e∗k ∈ X∗ since |e∗k(x)| = |xk| ≤ ‖x‖1, where ‖x‖1 := ∑d

k=1|xk| defines a norm on X which
must be equivalent to ‖·‖X since X is finite dimensional.

If (xn)n∈N is a sequence in X such that xn w
⇁ x for some x ∈ X as n→∞, then

∀k ∈ {1, . . . , d} : lim
n→∞

xkn = lim
n→∞

e∗k(xn) = e∗k(x) = xk.

This implies ‖xn − x‖1 → 0 and by equivalence of norms ‖xn − x‖X → 0 as n→∞.

Solution of 9.5:

(i) Let (xn)n∈N be a sequence in the Hilbert space (H, (·, ·)H) such that xn w
⇁ x for some

x ∈ H and such that ‖xn‖H → ‖x‖H as n → ∞. Since (x, ·)H ∈ H∗, weak convergence
implies (x, xn)H → (x, x)H = ‖x‖2

H as n→∞ and we have

‖xn − x‖2
H = (xn − x, xn − x)H = ‖xn‖2

H − 2(x, xn)H + ‖x‖2
H

n→∞−−−→ 0.

(ii) Let (xn)n∈N and (yn)n∈N be sequences in H and x, y ∈ H such that xn w
⇁ x and

‖yn − y‖H → 0 as n → ∞. Weak convergence xn w
⇁ x implies in particular, that

(xn, y)H → (x, y)H as n → ∞ and that there exists a finite constant C such that
‖xn‖H ≤ C for all n ∈ N. Thus,∣∣∣(xn, yn)H − (x, y)H

∣∣∣ =
∣∣∣(xn, yn − y)H + (xn, y)H − (x, y)H

∣∣∣
≤ C‖yn − y‖H +

∣∣∣(xn, y)H − (x, y)H
∣∣∣ n→∞−−−→ 0.
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(iii) Let (en)n∈N be an orthonormal system of the infinite dimensional Hilbert space
(H, (·, ·)H). Then, Bessel’s inequality

∞∑
n=0
|(x, en)H |2 ≤ ‖x‖2

H

implies (x, en)H → 0 as n→∞ for any x ∈ H. Since by the Riesz representation theorem
any f ∈ H∗ satisfies f(en) = (x, en)H for a unique x ∈ H, we obtain en w

⇁ 0.

(iv) Let x ∈ H satisfy ‖x‖H ≤ 1. If x = 0, then any orthonormal system converges weakly
to x by (iii). If x 6= 0, then an orthonormal system (en)n∈N of H with e1 = ‖x‖−1

H x can be
constructed via the Gram-Schmidt algorithm. For n ∈ N, let

xn := x+
(√

1− ‖x‖2
H

)
en+1

Then, since x ⊥ en+1, we have ‖xn‖2 = ‖x‖2
H + (1−‖x‖2

H) = 1 for every n ∈ N. Moreover,
xn

w
⇁ x follows from en+1

w
⇁ 0 as n→∞ by (iii).

(v) Given fn : [0, 2π]→ R as in the statement, (
√

1
π
fn)n∈N is an orthonormal system of

L2([0, 2π]), because∫ 2π

0
sin(mt) sin(nt) dt = 1

2

∫ 2π

0
cos
(
(m− n)t

)
− cos

(
(m+ n)t

)
dt

=

0, if m 6= n,

π, if m = n

holds for any m,n ∈ N. By (iii) weak convergence fn w
⇁ 0 as n→∞ follows.

Solution of 9.6:

(i) Let (X, τ) be a topological space and let A ⊂ X be closed. Let (xn)n∈N be a sequence
in A such that xn τ−→ x as n→∞ for some x ∈ X. Suppose x /∈ A. Then, U := X \ A is
an open set in τ containing x. Convergence xn τ−→ x implies that there exists N ∈ N such
that xN ∈ U . This however contradicts xN ∈ A. Thus, x ∈ A and we have proven that A
is sequentially closed.

The set Ωτ ⊂ X is closed, hence it is sequentially closed thanks to the first part of the
exercise. Moreover Ωτ contains Ω and thus Ωτ -seq ⊂ Ωτ , since every x ∈ Ωτ -seq is the limit
of a sequence (xn)n∈N ⊂ Ω and Ωτ is sequentially closed.

(ii) We construct a set Ω ⊂ `2 such that (0) ∈ Ωw but no sequences in Ω converge weakly
to zero, i.e. (0) /∈ Ωw-seq. (Here we denote (0) := (0, 0, . . .) ∈ `2.)

For n ∈ N and 2 ≤ m ∈ N, let x(n,m) = ( 1
n
, 0, . . . , 0, n, 0, . . .) ∈ `2, where the entry “n”

is at m-th position. By the Riesz representation theorem, any f ∈ (`2)∗ is of the form
f = (·, y)`2 for some y ∈ `2. For any y ∈ `2 and any 2 ≤ m,n ∈ N, we have

(x(n,m), y)`2 = 1
n
y1 + nym. (∗)
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Define Ω = {x(n,m) | n,m ∈ N, m ≥ 2}. Let (x(nk,mk))k∈N be any (fixed) sequence in
Ω. Towards a contradiction, suppose x(nk,mk) w

⇁ (0) as k → ∞. From (∗) we conclude
nk → ∞ and mk → ∞ as k → ∞. (Note that for y ∈ `2 we have ym → 0 as m → ∞.)
But then ‖x(nk,mk)‖2

`2 = n−2
k + n2

k →∞ as k →∞ and we derived a contradiction to the
fact, that (x(nk,mk))k∈N being a weakly convergent sequence must be bounded.

Now suppose by contradiction that (0) /∈ Ωw. Then there exists a weak neighbourhood V
of (0) ∈ `2 such that V ⊂ `2 \Ωw. By definition of weak topology, there exist finitely many
open sets U1, . . . , Ur ⊂ R and elements y(1), . . . , y(r) ∈ `2, where y(k) = (y(k)

j )j∈N such that

V ⊃
r⋂

k=1
{x ∈ `2 | (x, y(k))`2 ∈ Uk} 3 (0).

In particular we have 0 ∈ Uk for every k ∈ {1, . . . , r}. Since every Uk is open and r is
finite, there exists ε > 0 such that (−ε, ε) ⊂ Uk for every k ∈ {1, . . . , r}. However, if
we fix n ∈ N such that 1

n
|y(k)

1 | < ε
2 and then choose 2 ≤ m ∈ N large enough such that

n|y(k)
m | < ε

2 for each of the finitely many k ∈ {1, . . . , r}, we have

|(x(n,m), y(k))`2| ≤ 1
n
|y(k)

1 |+ n|y(k)
m | < ε ∀k ∈ {1, . . . , r}

which implies x(n,m) ∈ V . As x(n,m) ∈ Ω, a contradiction to the definition of V arises.

Solution of 9.7: For completeness, we first prove the representation of the convex hull
in the statement.

Lemma. The following representation theorem for convex hulls holds

conv(A) =
{ n∑
k=1

λkxk

∣∣∣∣ n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑
k=1

λk = 1
}
.

Proof. Given the normed space (X, ‖·‖X) and the subset A ⊂ X, let

C :=
{ n∑
k=1

λkxk

∣∣∣∣ n ∈ N, x1, . . . , xn ∈ A, λ1, . . . , λn ≥ 0,
n∑
k=1

λk = 1
}
.

We prove conv(A) = C by showing the two inclusions.

“⊆” Since A ⊂ C, the inclusion conv(A) ⊆ C follows from the definition of convex hull, if
we show that C is convex. In fact, given 0 < t < 1 we have

t
n∑
k=1

λkxk + (1− t)
m∑
k=1

λ′kx
′
k =

n+m∑
k=1

µkyk

with

0 ≤ µk :=

tλk if k ∈ {1, . . . , n},
(1− t)λ′k−n if k ∈ {n+ 1, . . . , n+m}

A 3 yk :=

xk if k ∈ {1, . . . , n},
x′k−n if k ∈ {n+ 1, . . . , n+m}

and µ1 + . . .+ µn+m = t(λ1 + . . .+ λn) + (1− t)(λ′1 + . . .+ λ′m) = t+ (1− t) = 1.
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“⊇” Let x1, . . . , xn ∈ A and let λ1, . . . , λn ≥ 0 with λ1 + . . . + λn = 1. We can assume
λ1 6= 0. Since conv(A) is convex and contains x1, x2 ∈ A, and since λ1

λ1+λ2
+ λ2

λ1+λ2
= 1,

conv(A) 3 λ1

λ1 + λ2
x1 + λ2

λ1 + λ2
x2 = λ1x1 + λ2x2

λ1 + λ2
=: y2.

For the same reason,

conv(A) 3 λ1 + λ2

λ1 + λ2 + λ3
y2 + λ3

λ1 + λ2 + λ3
x3 = λ1x2 + λ2x2 + λ3x3

λ1 + λ2 + λ3
=: y3.

Iterating this procedure, we obtain

conv(A) 3 λ1 + . . .+ λk−1

λ1 + . . .+ λk
yk−1 + λk

λ1 + . . .+ λk
xk = λ1x1 + . . .+ λkxk

λ1 + . . .+ λk
=: yk.

for every k ∈ {3, . . . , n}. Since λ1 + . . .+ λn = 1, we have yn = λ1x1 + . . .+ λnxn which
concludes the proof of conv(A) ⊇ C.

(i) Let (xk)k∈N be a sequence in X and let x ∈ X such that xk w
⇁ x as k → ∞. Let

K := conv({xk | k ∈ N}). By Problem 9.7, K ⊂ K ⊂ Kw-seq ⊂ Kw but since K is
convex, the closure K with respect to ‖·‖X agrees with the closure Kw with respect to
the weak topology: K = Kw. Therefore, the assumption that x is in the weak-sequential
closure Kw-seq 3 x implies x ∈ K and there exists a sequence (yn)n∈N in K such that
‖yn − x‖X → 0 as n→∞. By the representation theorem for convex hulls, each element
yn ∈ K must be a convex linear combination of finitely many elements of {xk | k ∈ N},
which concludes the proof.

(ii) Given the normed space (X, ‖·‖X), the convex subsets A,B ⊂ X and defining
4 := {(s, t) ∈ R2 | s+ t = 1, s, t ≥ 0}, we claim that

conv(A ∪B) = D :=
⋃

(s,t)∈4
(sA+ tB)

“⊆” By choosing (s, t) = (1, 0) we see A ⊂ D. Analogously, B ⊂ D, hence A ∪ B ⊂ D.
If x ∈ (conv(A ∪B)) \ (A ∪B), then the representation theorem for convex hulls implies
that x is of the form

x =
j∑

k=1
skak +

n∑
k=j+1

tkbk,

where 0 ≤ j ≤ n ∈ N, where ak ∈ A, sk ≥ 0 for all k = 1, . . . , j and bk ∈ B, tk ≥ 0 for
every k = j + 1, . . . , n, and where s1 + . . .+ sj + tj+1 + . . .+ tn = 1. Since x /∈ A ∪B by
assumption, we have

s :=
j∑

k=1
sk > 0, t :=

n∑
k=j+1

tk > 0,
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with s+ t = 1. Since A and B are both convex by assumption,

a := 1
s

j∑
k=1

skak ∈ A, b := 1
t

n∑
k=j+1

tkbk ∈ B,

and we have shown x = sa+ tb ∈ D.

“⊇” Let a ∈ A and b ∈ B. Then a, b ∈ conv(A ∪ B). Since conv(A ∪ B) is convex, we
must have sa+ tb ∈ conv(A ∪B) for every (s, t) ∈ 4. This proves conv(A ∪B) ⊇ D.

Under the assumption that the convex sets A and B are compact, we show now that

D =
⋃

(s,t)∈4
(sA+ tB)

is compact. Let (xn)n∈N be a sequence in D. Then there exist an ∈ A and bn ∈ B as well
as (sn, tn) ∈ 4 such that xn = snan + tnbn for every n ∈ N. We argue in 3 steps:

• Since 4 is compact in R2, a subsequence ((sn, tn))n∈Λ1⊂N converges in 4.
• Since A is compact in X, a subsequence (an)n∈Λ2⊂Λ1 converges in A.
• Since B is compact in X, a subsequence (bn)n∈Λ3⊂Λ2 converges in B.

Therefore, the subsequence (xn)n∈Λ3 converges in D which concludes the proof.
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