

Definition. Let (X, τ) be a topological space. Denoting the set of all neighbourhoods of a point $x \in X$ by

$$\mathcal{U}_x = \{ U \subset X \mid \exists O \in \tau : x \in O \subset U \},\$$

we say that $\mathcal{B}_x \subset \mathcal{U}_x$ is a *neighbourhood basis* of x in (X, τ) if $\forall U \in \mathcal{U}_x \exists V \in \mathcal{B}_x : V \subset U$.

Definition. A topological space (X, τ) is called *metrizable* if there exists a metric (namely a distance function) $d: X \times X \to \mathbb{R}$ on X (as defined in Problem 1.1) such that, denoting $B_{\varepsilon}(x) = \{y \in X \mid d(x, y) < \varepsilon\}$, there holds

$$\tau = \{ O \subset X \mid \forall x \in O \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset O \} \}.$$

(i) Show that any metrizable topology τ satisfies the *first axiom of countability* which means that each point has a *countable* neighbourhood basis.

From now on, let us assume that $(X, \|\cdot\|_X)$ is a normed space and τ_w denotes the weak topology on X.

(ii) Prove that

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \big((-\varepsilon, \varepsilon) \big) \ \middle| \ n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon > 0 \right\}$$

is a neighbourhood basis of $0 \in X$ in (X, τ_w) .

(iii) Prove the following lemma: Let $f_1, \ldots, f_n \in X^*$ and $f \in X^*$ be given. Let

 $N := \{ x \in X \mid f_1(x) = \ldots = f_n(x) = 0 \}.$

Then f(x) = 0 for every $x \in N$ if and only if $f = \lambda_1 f_1 + \ldots + \lambda_n f_n$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

- (iv) Using (ii) and (iii), show that if (X, τ_w) is first countable, then $(X^*, \|\cdot\|_{X^*})$ admits a countable algebraic basis.
- (v) Assume that the normed space $(X, \|\cdot\|_X)$ is infinite dimensional and conclude from (i) and (iv) (recalling also that any algebraic basis of a Banach space is either finite or uncountable) that the topological space (X, τ_w) is not metrizable.

10.2. Non-compactness **A**. In each of the Banach spaces below, find a sequence which is bounded but does not have a convergent subsequence.

- (i) $\left(L^{p}([0,1]), \|\cdot\|_{L^{p}([0,1])}\right)$ for $1 \le p \le \infty$.
- (ii) $(c_0, \|\cdot\|_{\ell^{\infty}})$ where $c_0 \subset \ell^{\infty}$ is the space of sequences converging to zero.

10.3. Separability \mathfrak{C} . Let $(X, \|\cdot\|_X)$ be a normed space. Prove that the following statements are equivalent.

- (i) The normed space $(X, \|\cdot\|_X)$ is separable.
- (ii) $B = \{x \in X \mid ||x||_X \le 1\}$ is separable.
- (iii) $S = \{x \in X \mid ||x||_X = 1\}$ is separable.

10.4. Quadratic functional on a reflexive space \Box . Let $(X, \|\cdot\|_X)$ be a reflexive Banach space over \mathbb{R} . Given a positive integer n, consider n pairwise distinct points x_1, \ldots, x_n in X and the functional

$$F: X \to \mathbb{R}, \qquad \qquad F(x) = \sum_{i=1}^{n} ||x - x_i||_X^2.$$

- (i) Prove that the functional F has a global minimum on X, namely the value $\inf_{x \in X} F(x)$ is a real number attained by F at some $\overline{x} \in X$.
- (ii) Let us now assume that $(X, \|\cdot\|_X)$ is a Hilbert space (thus $\|\cdot\|_X$ is induced by a scalar product $\langle \cdot, \cdot \rangle_X$). Prove that the minimum $\overline{x} \in X$ is unique, and that \overline{x} belongs to the convex hull K of $\{x_1, \ldots, x_n\}$.

10.5. A class of functionals on a reflexive space \square . Let $(X, \|\cdot\|_X)$ be a reflexive Banach space over \mathbb{R} . Let $\ell \in X^*$ and for any given real number $\alpha \ge 0$ consider the functional $F_{\alpha} \colon X \to \mathbb{R}$ given by

$$F_{\alpha}(x) = \|x\|_{X}^{2} - |\ell(x)|^{\alpha}.$$

Prove that there exists $\alpha_0 > 0$ (to be explicitly determined) such that:

- (i) For any $0 \le \alpha < \alpha_0$ the functional F_{α} has a global minimum on X, namely the value $\inf_{x \in X} F_{\alpha}(x)$ is a real number attained by F_{α} at some (not necessarily unique) $\overline{x} \in X$.
- (ii) For any $\alpha > \alpha_0$ there exist examples of reflexive Banach spaces $(X, \|\cdot\|_X)$ and linear functionals $\ell \in X^*$ such that one has instead $\inf_{x \in X} F_{\alpha}(x) = -\infty$.

10. Solutions

Solution of 10.1:

(i) Let (X, τ) be a metrizable topological space. Let $d: X \times X \to \mathbb{R}$ be a metric inducing the topology τ . Given $x \in X$, we consider

$$\mathcal{B}_x := \{ B_{\frac{1}{n}}(x) \mid n \in \mathbb{N} \}.$$

Let U be any neighbourhood of x. Since (X, τ) is metrizable, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$. Choosing $\mathbb{N} \ni n > \frac{1}{\varepsilon}$, we have $B_{\frac{1}{n}}(x) \subset U$, which shows that \mathcal{B}_x is a neighbourhood basis of x in (X, τ) . Since $x \in X$ is arbitrary and \mathcal{B}_x countable, we have verified the first axiom of countability for (X, τ) .

(ii) Let $(X, \|\cdot\|_X)$ be a normed space. Let τ_w be the weak topology on X. Let $U \subset X$ be any neighbourhood of $0 \in X$ in (X, τ_w) . Then there exists $\Omega \in \tau_w$ such that $0 \in \Omega \subset U$. By definition of weak topology, Ω is an arbitrary union and finite intersection of sets of the form $f^{-1}(I)$ for $f \in X^*$ and $I \subset \mathbb{R}$ open. In particular, Ω contains a finite intersection of such sets containing the origin. More precisely, there exist $f_1, \ldots, f_n \in X^*$ and open sets $I_1, \ldots, I_n \subset \mathbb{R}$ such that

$$\Omega \supset \bigcap_{k=1}^{n} f_k^{-1}(I_k) \ni 0.$$

By linearity $f_k(0) = 0 \in I_k$ for every $k \in \{1, \ldots, n\}$. Since $I_1, \ldots, I_n \subset \mathbb{R}$ are open and n finite, there exists $\varepsilon > 0$ such that $(-\varepsilon, \varepsilon) \subset I_k$ for every $k \in \{1, \ldots, n\}$. Thus,

$$\Omega \supset \bigcap_{k=1}^{n} f_{k}^{-1}(I_{k}) \supset \bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon,\varepsilon))$$

and we conclude that a neighbourhood basis of $0 \in X$ in (X, τ_w) is given by

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \left((-\varepsilon, \varepsilon) \right) \ \middle| \ n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon > 0 \right\}.$$

(iii) Let $f_1, \ldots, f_n \in X^*$ and $f \in X^*$ be given. Suppose,

$$f(x) = 0$$
 $\forall x \in N := \{x \in X \mid f_1(x) = \ldots = f_n(x) = 0\}$ (*)

Let the linear map $\varphi \colon X \to \mathbb{R}^n$ be defined by

$$\varphi(x) = (f_1(x), \dots, f_n(x)).$$

Assumption (*) implies ker $\varphi \subset$ ker f. Let $F: X/\ker \varphi \cong \operatorname{im}(\varphi) \subset \mathbb{R}^n \to \mathbb{R}$ be defined by F([x]) := f(x). This is well-defined since F([x+p]) = f(x) + f(p) = f(x) for every $p \in \ker \varphi \subset \ker f$. Defining F to be zero on the orthogonal complement of $\operatorname{im}(\varphi) \subset \mathbb{R}^n$, we obtain a linear map $F: \mathbb{R}^n \to \mathbb{R}$ satisfying $f = F \circ \varphi$. By the Riesz representation theorem on \mathbb{R}^n we have $F(y_1, \ldots, y_n) = \lambda_1 y_1 + \ldots + \lambda_n y_n$ for some $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$. This implies

$$f(x) = F(\varphi(x)) = \lambda_1 f_1(x) + \ldots + \lambda_n f_n(x).$$

Conversely, if f is a linear combination of $\{f_1, \ldots, f_n\}$, then f(x) = 0 for every $x \in N$.

(iv) Let $(X, \|\cdot\|_X)$ be a normed space and suppose that (X, τ_w) is first countable. Then there exists a countable neighbourhood basis $\{A_\alpha\}_{\alpha\in\mathbb{N}}$ of $0 \in X$ in (X, τ_w) . Since \mathcal{B} defined in (ii) is also a neighbourhood basis of $0 \in X$ in (X, τ_w) , we have

$$\forall \alpha \in \mathbb{N} \quad \exists B_{\alpha} \in \mathcal{B} : \quad B_{\alpha} \subset A_{\alpha}.$$

By construction of \mathcal{B} , this means that

$$\forall \alpha \in \mathbb{N} \quad \exists n_{\alpha} \in \mathbb{N}, \ f_{1}^{\alpha}, \dots, f_{n_{\alpha}}^{\alpha} \in X^{*}, \ \varepsilon_{\alpha} > 0:$$
$$B_{\alpha} := \{ x \in X \mid \forall k = 1, \dots, n_{\alpha}: \ |f_{k}^{\alpha}(x)| < \varepsilon_{\alpha} \} \subset A_{\alpha}.$$

We claim that every $f \in X^*$ is a finite linear combination of elements in the set

$$\Upsilon := \bigcup_{\alpha \in \mathbb{N}} \{ f_k^\alpha \mid k = 1, \dots, n_\alpha \}.$$

Let $f \in X^*$. Then, $\{x \in X \mid |f(x)| < 1\}$ is a neighbourhood of $0 \in X$ in (X, τ_w) . Consequently, there exists $\alpha \in \mathbb{N}$ such that $A_{\alpha} \subset \{x \in X \mid |f(x)| < 1\}$. Then, for every m > 0 by linearity

$$\{ x \in X \mid \forall k = 1, \dots, n_{\alpha} : |f_k^{\alpha}(x)| < \frac{1}{m} \varepsilon_{\alpha} \}$$

= $\frac{1}{m} B_{\alpha} \subset \frac{1}{m} A_{\alpha} \subset \{ \frac{1}{m} x \in X \mid |f(x)| < 1 \} = \{ x \in X \mid |f(x)| < \frac{1}{m} \}.$

Taking the intersection over all $m \in \mathbb{N}$, we obtain

$$\{x \in X \mid \forall k = 1, \dots, n_{\alpha} : f_k^{\alpha}(x) = 0\} \subset \{x \in X \mid f(x) = 0\}$$

According to part (iii), this implies that f is a linear combination of $\{f_1^{\alpha}, \ldots, f_{n_{\alpha}}^{\alpha}\}$ which is a finite subset of Υ . Since $\Upsilon \subset X^*$ is at most countable, we found an algebraic basis for X^* that is at most countable.

(v) Suppose (X, τ_w) is metrizable. Then (X, τ_w) satisfies the first axiom of countability according to part (i). According to part (iv), an algebraic basis for X^* is at most countable. However, $(X^*, \|\cdot\|_{X^*})$ is always complete because \mathbb{R} is complete (Beispiel 2.1.1). Now recall that any algebraic basis of a complete space is either finite or uncountable, hence in our case the algebrai basis is finite. However, if the algebraic basis of X^* is finite, then $\infty > \dim X^* = \dim X^{**} \ge \dim X$, which contradicts our assumption. Therefore (X, τ_w) cannot be metrizable.

Solution of 10.2:

(i) Given $n \in \mathbb{N}$, we divide the interval [0,1] into 2^n subintervals I_1, \ldots, I_{2^n} of equal length, and define the function $f_n \colon [0,1] \to \mathbb{R}$ on each I_k to be $-\frac{1}{2}$ if k is odd and $+\frac{1}{2}$ if k is even. More precisely,

$$f_n(x) = \begin{cases} -\frac{1}{2}, & \text{if } \exists k \in \mathbb{N} : \ 2^n x \in [2k-2, 2k-1) \\ \frac{1}{2}, & \text{else.} \end{cases}$$

By construction, $||f_n||_{L^p([0,1])} = \frac{1}{2}$ for every $n \in \mathbb{N}$ and every $1 \leq p \leq \infty$. Therefore, the sequence $(f_n)_{n \in \mathbb{N}}$ is bounded in $L^p([0,1])$. However by construction, for any pair $n, m \in \mathbb{N}$ with $n \neq m$ the difference $|f_n - f_m|$ is the characteristic function of a union of subintervals whose lengths sum up to $\frac{1}{2}$. In particular, $||f_n - f_m||_{L^p([0,1])} = (\frac{1}{2})^{\frac{1}{p}}$ for $1 \leq p < \infty$ and $||f_n - f_m||_{L^\infty([0,1])} = 1$. Consequently, $(f_n)_{n \in \mathbb{N}}$ cannot have any convergent subsequence.

(ii) Given $n \in \mathbb{N}$, let $e_n \in c_0$ be given by $e_n = (0, \ldots, 0, 1, 0, \ldots)$, where the 1 is at *n*-th position. Then the sequence $(e_n)_{n \in \mathbb{N}}$ is bounded in $(c_0, \|\cdot\|_{\ell\infty})$ since $\|e_n\|_{\ell^{\infty}} = 1$ for every $n \in \mathbb{N}$. However, for any pair $n, m \in \mathbb{N}$ with $n \neq m$ we have $\|e_n - e_m\|_{\ell^{\infty}} = 1$. Consequently, $(e_n)_{n \in \mathbb{N}}$ cannot have any convergent subsequence.

Solution of 10.3: Since subsets of separable sets are separable (Satz 5.2.1), the inclusions $S \subset B \subset X$ already yield (i) \Rightarrow (ii) \Rightarrow (iii).

Hence, we now conclude the proof by showing that (iii) \Rightarrow (i). By assumption, there exists a countable dense subset $D \subset S$. Moreover, as countable union of countable sets,

$$E := \bigcup_{q \in \mathbb{Q}} qD = \{ qd \in X \mid q \in \mathbb{Q}, \ d \in D \}$$

is countable. We claim that $E \subset X$ is dense. Let $x \in X$ and $\varepsilon > 0$ be arbitrary. Since $0 \in E$, we may assume $x \neq 0$ and consider the element $\frac{x}{\|x\|_X} \in S$. Since $D \subset S$ is dense, there exists $d \in D$ such that

$$\left\|d - \frac{x}{\|x\|_X}\right\|_X < \frac{\varepsilon}{2\|x\|_X}$$

Moreover, since $||x||_X \in \mathbb{R}$ and since \mathbb{Q} is dense in \mathbb{R} , there exists $q \in \mathbb{Q}$ such that

$$\left|q - \|x\|_X\right| < \frac{\varepsilon}{2}.$$

Using $D \subset S \Rightarrow ||d||_X = 1$ and combining the inequalities, the point $qd \in E$ satisfies

$$\begin{aligned} \|qd - x\|_X &= \left\| (q - \|x\|_X)d + \|x\|_X d - x \right\|_X \\ &\leq \left| q - \|x\|_X \right| + \left\| \|x\|_X d - x \right\|_X < \frac{\varepsilon}{2} + \frac{\varepsilon \|x\|_X}{2\|x\|_X} = \varepsilon, \end{aligned}$$

which proves that $E \subset X$ is dense. Since E is countable, we have shown that X is separable.

Solution of 10.4:

(i) First note that the map F is coercive, because $F(x) \ge ||x - x_1||_X^2 \to \infty$ as $||x||_X \to \infty$. Moreover F is weakly sequentially lower semicontinuous because the map $x \mapsto ||x||_X$ is.

Hence, since X is reflexive, the direct method (cf. "Variationsprinzip", Satz 5.4.1) applies and we obtain $\overline{x} \in X$ satisfying

$$F(\overline{x}) = \inf_{x \in X} F(x).$$

(ii) Suppose, $\overline{y} \in X \setminus \{\overline{x}\}$ is another minimiser of F and consider $\overline{z} = \frac{1}{2}(\overline{x} + \overline{y})$. Since we are assuming that X is a Hilbert space, the parallelogram identity holds and implies

$$\begin{aligned} \|\overline{z} - x_i\|_X^2 &= \left\|\frac{\overline{x} - x_i}{2} + \frac{\overline{y} - x_i}{2}\right\|_X^2 \\ &= 2\left\|\frac{\overline{x} - x_i}{2}\right\|_X^2 + 2\left\|\frac{\overline{y} - x_i}{2}\right\|_X^2 - \left\|\underbrace{\overline{x} - x_i}_{2} - \frac{\overline{y} - x_i}{2}\right\|_X^2 \\ &< \frac{\|\overline{x} - x_i\|_X^2}{2} + \frac{\|\overline{y} - x_i\|_X^2}{2}. \end{aligned}$$

Hence, a contradiction follows from

$$F(\overline{z}) < \frac{F(\overline{x})}{2} + \frac{F(\overline{y})}{2} = \inf_{x \in X} F(x)$$

which proves that the minimiser is unique.

Moreover, if $\|\cdot\|_X$ is induced by the scalar product $\langle \cdot, \cdot \rangle_X$, then the minimiser $\overline{x} \in X$ of F has the property that

$$\forall y \in X: \quad 0 = \frac{d}{dt} \Big|_{t=0} F(\overline{x} + ty) = 2\sum_{i=1}^{n} \langle y, \overline{x} - x_i \rangle_X = 2 \Big\langle y, \sum_{i=1}^{n} (\overline{x} - x_i) \Big\rangle_X.$$

Consequently,

$$\sum_{i=1}^{n} (\overline{x} - x_i) = 0 \quad \Rightarrow \quad n\overline{x} = \sum_{i=1}^{n} x_i \quad \Rightarrow \quad \overline{x} = \sum_{i=1}^{n} \frac{1}{n} x_i$$

which proves that \overline{x} is in the convex hull of $\{x_1, \ldots, x_n\} \subset X$.

Solution of 10.5: We claim that $\alpha_0 = 2$. For every $0 \le \alpha < 2$, the map F_{α} is coercive, because

$$|F_{\alpha}(x)| = ||x||_{X}^{2} - |\ell(x)|^{\alpha} \ge \left(||x||_{X}^{2-\alpha} - ||\ell||_{X^{*}}^{\alpha}\right) ||x||_{X}^{\alpha} \xrightarrow{||x||_{X} \to \infty} \infty.$$

Moreover F_{α} is weakly sequentially lower semi-continuous, because $x \mapsto ||x||_X^2$ is weakly sequentially lower semi-continuous and, by definition of weak convergence, $x \mapsto \ell(x)$ is weakly sequentially continuous. As a result, since X is reflexive, the direct method (cf. "Variationsprinzip", Satz 5.4.1) applies and we obtain $\bar{x} \in X$ satisfying

$$F_{\alpha}(\bar{x}) = \inf_{x \in X} F_{\alpha}(x).$$

Given $\alpha > 2$, consider the example $(X, \|\cdot\|_X) = (\mathbb{R}, |\cdot|)$ (which is reflexive because any finite dimensional Banach space is reflexive) with $\ell(x) = x$. Then

$$F_{\alpha}(x) = x^{2} - |x|^{\alpha} = \left(1 - |x|^{\alpha - 2}\right)|x|^{2} \xrightarrow{x \to \infty} -\infty.$$