10.1. Project: The weak topology is not metrizable $\boldsymbol{q}_{\boldsymbol{*}} \boldsymbol{\theta}$.

Definition. Let (X, τ) be a topological space. Denoting the set of all neighbourhoods of a point $x \in X$ by

$$
\mathcal{U}_{x}=\{U \subset X \mid \exists O \in \tau: x \in O \subset U\},
$$

we say that $\mathcal{B}_{x} \subset \mathcal{U}_{x}$ is a neighbourhood basis of x in (X, τ) if $\forall U \in \mathcal{U}_{x} \exists V \in \mathcal{B}_{x}: V \subset U$.
Definition. A topological space (X, τ) is called metrizable if there exists a metric (namely a distance function) $d: X \times X \rightarrow \mathbb{R}$ on X (as defined in Problem 1.1) such that, denoting $B_{\varepsilon}(x)=\{y \in X \mid d(x, y)<\varepsilon\}$, there holds

$$
\left.\tau=\left\{O \subset X \mid \forall x \in O \exists \varepsilon>0: B_{\varepsilon}(x) \subset O\right)\right\}
$$

(i) Show that any metrizable topology τ satisfies the first axiom of countability which means that each point has a countable neighbourhood basis.

From now on, let us assume that $\left(X,\|\cdot\|_{X}\right)$ is a normed space and τ_{w} denotes the weak topology on X.
(ii) Prove that

$$
\mathcal{B}:=\left\{\bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon)) \mid n \in \mathbb{N}, f_{1}, \ldots, f_{n} \in X^{*}, \varepsilon>0\right\}
$$

is a neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$.
(iii) Prove the following lemma: Let $f_{1}, \ldots, f_{n} \in X^{*}$ and $f \in X^{*}$ be given. Let

$$
N:=\left\{x \in X \mid f_{1}(x)=\ldots=f_{n}(x)=0\right\} .
$$

Then $f(x)=0$ for every $x \in N$ if and only if $f=\lambda_{1} f_{1}+\ldots+\lambda_{n} f_{n}$ for some $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.
(iv) Using (ii) and (iii), show that if ($\left.X, \tau_{\mathrm{w}}\right)$ is first countable, then $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ admits a countable algebraic basis.
(v) Assume that the normed space $\left(X,\|\cdot\|_{X}\right)$ is infinite dimensional and conclude from (i) and (iv) (recalling also that any algebraic basis of a Banach space is either finite or uncountable) that the topological space (X, τ_{w}) is not metrizable.
10.2. Non-compactness . In each of the Banach spaces below, find a sequence which is bounded but does not have a convergent subsequence.
(i) $\left(L^{p}([0,1]),\|\cdot\|_{L^{p}([0,1])}\right)$ for $1 \leq p \leq \infty$.
(ii) $\left(c_{0},\|\cdot\|_{\ell \infty}\right)$ where $c_{0} \subset \ell^{\infty}$ is the space of sequences converging to zero.
10.3. Separability . Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. Prove that the following statements are equivalent.
(i) The normed space $\left(X,\|\cdot\|_{X}\right)$ is separable.
(ii) $B=\left\{x \in X \mid\|x\|_{X} \leq 1\right\}$ is separable.
(iii) $S=\left\{x \in X \mid\|x\|_{X}=1\right\}$ is separable.
10.4. Quadratic functional on a reflexive space [\square. Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space over \mathbb{R}. Given a positive integer n, consider n pairwise distinct points x_{1}, \ldots, x_{n} in X and the functional

$$
F: X \rightarrow \mathbb{R}, \quad F(x)=\sum_{i=1}^{n}\left\|x-x_{i}\right\|_{X}^{2}
$$

(i) Prove that the functional F has a global minimum on X, namely the value $\inf _{x \in X} F(x)$ is a real number attained by F at some $\bar{x} \in X$.
(ii) Let us now assume that $\left(X,\|\cdot\|_{X}\right)$ is a Hilbert space (thus $\|\cdot\|_{X}$ is induced by a scalar product $\langle\cdot, \cdot\rangle_{X}$). Prove that the minimum $\bar{x} \in X$ is unique, and that \bar{x} belongs to the convex hull K of $\left\{x_{1}, \ldots, x_{n}\right\}$.
10.5. A class of functionals on a reflexive space \square. Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive Banach space over \mathbb{R}. Let $\ell \in X^{*}$ and for any given real number $\alpha \geq 0$ consider the functional $F_{\alpha}: X \rightarrow \mathbb{R}$ given by

$$
F_{\alpha}(x)=\|x\|_{X}^{2}-|\ell(x)|^{\alpha} .
$$

Prove that there exists $\alpha_{0}>0$ (to be explicitly determined) such that:
(i) For any $0 \leq \alpha<\alpha_{0}$ the functional F_{α} has a global minimum on X, namely the value $\inf _{x \in X} F_{\alpha}(x)$ is a real number attained by F_{α} at some (not necessarily unique) $\bar{x} \in X$.
(ii) For any $\alpha>\alpha_{0}$ there exist examples of reflexive Banach spaces $\left(X,\|\cdot\|_{X}\right)$ and linear functionals $\ell \in X^{*}$ such that one has instead $\inf _{x \in X} F_{\alpha}(x)=-\infty$.

10. Solutions

Solution of 10.1:

(i) Let (X, τ) be a metrizable topological space. Let $d: X \times X \rightarrow \mathbb{R}$ be a metric inducing the topology τ. Given $x \in X$, we consider

$$
\mathcal{B}_{x}:=\left\{\left.B_{\frac{1}{n}}(x) \right\rvert\, n \in \mathbb{N}\right\} .
$$

Let U be any neighbourhood of x. Since (X, τ) is metrizable, there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset U$. Choosing $\mathbb{N} \ni n>\frac{1}{\varepsilon}$, we have $B_{\frac{1}{n}}(x) \subset U$, which shows that \mathcal{B}_{x} is a neighbourhood basis of x in (X, τ). Since $x \in X$ is arbitrary and \mathcal{B}_{x} countable, we have verified the first axiom of countability for (X, τ).
(ii) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space. Let τ_{w} be the weak topology on X. Let $U \subset X$ be any neighbourhood of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$. Then there exists $\Omega \in \tau_{\mathrm{w}}$ such that $0 \in \Omega \subset U$. By definition of weak topology, Ω is an arbitrary union and finite intersection of sets of the form $f^{-1}(I)$ for $f \in X^{*}$ and $I \subset \mathbb{R}$ open. In particular, Ω contains a finite intersection of such sets containing the origin. More precisely, there exist $f_{1}, \ldots, f_{n} \in X^{*}$ and open sets $I_{1}, \ldots, I_{n} \subset \mathbb{R}$ such that

$$
\Omega \supset \bigcap_{k=1}^{n} f_{k}^{-1}\left(I_{k}\right) \ni 0 .
$$

By linearity $f_{k}(0)=0 \in I_{k}$ for every $k \in\{1, \ldots, n\}$. Since $I_{1}, \ldots, I_{n} \subset \mathbb{R}$ are open and n finite, there exists $\varepsilon>0$ such that $(-\varepsilon, \varepsilon) \subset I_{k}$ for every $k \in\{1, \ldots, n\}$. Thus,

$$
\Omega \supset \bigcap_{k=1}^{n} f_{k}^{-1}\left(I_{k}\right) \supset \bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon))
$$

and we conclude that a neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$ is given by

$$
\mathcal{B}:=\left\{\bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon)) \mid n \in \mathbb{N}, f_{1}, \ldots, f_{n} \in X^{*}, \varepsilon>0\right\}
$$

(iii) Let $f_{1}, \ldots, f_{n} \in X^{*}$ and $f \in X^{*}$ be given. Suppose,

$$
\begin{equation*}
f(x)=0 \quad \forall x \in N:=\left\{x \in X \mid f_{1}(x)=\ldots=f_{n}(x)=0\right\} \tag{*}
\end{equation*}
$$

Let the linear map $\varphi: X \rightarrow \mathbb{R}^{n}$ be defined by

$$
\varphi(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right) .
$$

Assumption $(*)$ implies $\operatorname{ker} \varphi \subset \operatorname{ker} f$. Let $F: X / \operatorname{ker} \varphi \cong \operatorname{im}(\varphi) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $F([x]):=f(x)$. This is well-defined since $F([x+p])=f(x)+f(p)=f(x)$ for every $p \in \operatorname{ker} \varphi \subset \operatorname{ker} f$. Defining F to be zero on the orthogonal complement of $\operatorname{im}(\varphi) \subset \mathbb{R}^{n}$, we obtain a linear map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying $f=F \circ \varphi$. By the Riesz representation theorem on \mathbb{R}^{n} we have $F\left(y_{1}, \ldots, y_{n}\right)=\lambda_{1} y_{1}+\ldots+\lambda_{n} y_{n}$ for some $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$. This implies

$$
f(x)=F(\varphi(x))=\lambda_{1} f_{1}(x)+\ldots+\lambda_{n} f_{n}(x) .
$$

Conversely, if f is a linear combination of $\left\{f_{1}, \ldots, f_{n}\right\}$, then $f(x)=0$ for every $x \in N$.
(iv) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and suppose that (X, τ_{w}) is first countable. Then there exists a countable neighbourhood basis $\left\{A_{\alpha}\right\}_{\alpha \in \mathbb{N}}$ of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$. Since \mathcal{B} defined in (ii) is also a neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$, we have

$$
\forall \alpha \in \mathbb{N} \quad \exists B_{\alpha} \in \mathcal{B}: \quad B_{\alpha} \subset A_{\alpha}
$$

By construction of \mathcal{B}, this means that

$$
\begin{aligned}
& \forall \alpha \in \mathbb{N} \quad \exists n_{\alpha} \in \mathbb{N}, f_{1}^{\alpha}, \ldots, f_{n_{\alpha}}^{\alpha} \in X^{*}, \\
& \varepsilon_{\alpha}>0: \\
& B_{\alpha}:=\left\{x \in X\left|\forall k=1, \ldots, n_{\alpha}:\left|f_{k}^{\alpha}(x)\right|<\varepsilon_{\alpha}\right\} \subset A_{\alpha} .\right.
\end{aligned}
$$

We claim that every $f \in X^{*}$ is a finite linear combination of elements in the set

$$
\Upsilon:=\bigcup_{\alpha \in \mathbb{N}}\left\{f_{k}^{\alpha} \mid k=1, \ldots, n_{\alpha}\right\} .
$$

Let $f \in X^{*}$. Then, $\left\{x \in X||f(x)|<1\}\right.$ is a neighbourhood of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$. Consequently, there exists $\alpha \in \mathbb{N}$ such that $A_{\alpha} \subset\{x \in X| | f(x) \mid<1\}$. Then, for every $m>0$ by linearity

$$
\begin{aligned}
& \left\{x \in X\left|\forall k=1, \ldots, n_{\alpha}:\left|f_{k}^{\alpha}(x)\right|<\frac{1}{m} \varepsilon_{\alpha}\right\}\right. \\
& \\
& \quad=\frac{1}{m} B_{\alpha} \subset \frac{1}{m} A_{\alpha} \subset\left\{\left.\frac{1}{m} x \in X| | f(x) \right\rvert\,<1\right\}=\left\{x \in X| | f(x) \left\lvert\,<\frac{1}{m}\right.\right\} .
\end{aligned}
$$

Taking the intersection over all $m \in \mathbb{N}$, we obtain

$$
\left\{x \in X \mid \forall k=1, \ldots, n_{\alpha}: f_{k}^{\alpha}(x)=0\right\} \subset\{x \in X \mid f(x)=0\} .
$$

According to part (iii), this implies that f is a linear combination of $\left\{f_{1}^{\alpha}, \ldots, f_{n_{\alpha}}^{\alpha}\right\}$ which is a finite subset of Υ. Since $\Upsilon \subset X^{*}$ is at most countable, we found an algebraic basis for X^{*} that is at most countable.
(v) Suppose $\left(X, \tau_{\mathrm{w}}\right)$ is metrizable. Then $\left(X, \tau_{\mathrm{w}}\right)$ satisfies the first axiom of countability according to part (i). According to part (iv), an algebraic basis for X^{*} is at most countable. However, $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ is always complete because \mathbb{R} is complete (Beispiel 2.1.1). Now recall that any algebraic basis of a complete space is either finite or uncountable, hence in our case the algebrai basis is finite. However, if the algebraic basis of X^{*} is finite, then $\infty>\operatorname{dim} X^{*}=\operatorname{dim} X^{* *} \geq \operatorname{dim} X$, which contradicts our assumption. Therefore (X, τ_{w}) cannot be metrizable.

Solution of 10.2:

(i) Given $n \in \mathbb{N}$, we divide the interval $[0,1]$ into 2^{n} subintervals $I_{1}, \ldots, I_{2^{n}}$ of equal length, and define the function $f_{n}:[0,1] \rightarrow \mathbb{R}$ on each I_{k} to be $-\frac{1}{2}$ if k is odd and $+\frac{1}{2}$ if k is even. More precisely,

$$
f_{n}(x)=\left\{\begin{aligned}
-\frac{1}{2}, & \text { if } \exists k \in \mathbb{N}: 2^{n} x \in[2 k-2,2 k-1) \\
\frac{1}{2}, & \text { else. }
\end{aligned}\right.
$$

By construction, $\left\|f_{n}\right\|_{L^{p}([0,1])}=\frac{1}{2}$ for every $n \in \mathbb{N}$ and every $1 \leq p \leq \infty$. Therefore, the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded in $L^{p}([0,1])$. However by construction, for any pair $n, m \in \mathbb{N}$ with $n \neq m$ the difference $\left|f_{n}-f_{m}\right|$ is the characteristic function of a union of subintervals whose lengths sum up to $\frac{1}{2}$. In particular, $\left\|f_{n}-f_{m}\right\|_{L^{p}([0,1])}=\left(\frac{1}{2}\right)^{\frac{1}{p}}$ for $1 \leq p<\infty$ and $\left\|f_{n}-f_{m}\right\|_{L^{\infty}([0,1])}=1$. Consequently, $\left(f_{n}\right)_{n \in \mathbb{N}}$ cannot have any convergent subsequence.
(ii) Given $n \in \mathbb{N}$, let $e_{n} \in c_{0}$ be given by $e_{n}=(0, \ldots, 0,1,0, \ldots)$, where the 1 is at n-th position. Then the sequence $\left(e_{n}\right)_{n \in \mathbb{N}}$ is bounded in $\left(c_{0},\|\cdot\|_{\ell \infty}\right)$ since $\left\|e_{n}\right\|_{\ell \infty}=1$ for every $n \in \mathbb{N}$. However, for any pair $n, m \in \mathbb{N}$ with $n \neq m$ we have $\left\|e_{n}-e_{m}\right\|_{\ell \infty}=1$. Consequently, $\left(e_{n}\right)_{n \in \mathbb{N}}$ cannot have any convergent subsequence.

Solution of 10.3: Since subsets of separable sets are separable (Satz 5.2.1), the inclusions $S \subset B \subset X$ already yield (i) \Rightarrow (ii) \Rightarrow (iii).
Hence, we now conclude the proof by showing that (iii) \Rightarrow (i). By assumption, there exists a countable dense subset $D \subset S$. Moreover, as countable union of countable sets,

$$
E:=\bigcup_{q \in \mathbb{Q}} q D=\{q d \in X \mid q \in \mathbb{Q}, d \in D\}
$$

is countable. We claim that $E \subset X$ is dense. Let $x \in X$ and $\varepsilon>0$ be arbitrary. Since $0 \in E$, we may assume $x \neq 0$ and consider the element $\frac{x}{\|x\|_{X}} \in S$. Since $D \subset S$ is dense, there exists $d \in D$ such that

$$
\left\|d-\frac{x}{\|x\|_{X}}\right\|_{X}<\frac{\varepsilon}{2\|x\|_{X}}
$$

Moreover, since $\|x\|_{X} \in \mathbb{R}$ and since \mathbb{Q} is dense in \mathbb{R}, there exists $q \in \mathbb{Q}$ such that

$$
\left|q-\|x\|_{X}\right|<\frac{\varepsilon}{2}
$$

Using $D \subset S \Rightarrow\|d\|_{X}=1$ and combining the inequalities, the point $q d \in E$ satisfies

$$
\begin{aligned}
\|q d-x\|_{X} & =\left\|\left(q-\|x\|_{X}\right) d+\right\| x\left\|_{X} d-x\right\|_{X} \\
& \leq\left|q-\|x\|_{X}\right|+\| \| x\left\|_{X} d-x\right\|_{X}<\frac{\varepsilon}{2}+\frac{\varepsilon\|x\|_{X}}{2\|x\|_{X}}=\varepsilon
\end{aligned}
$$

which proves that $E \subset X$ is dense. Since E is countable, we have shown that X is separable.

Solution of 10.4:

(i) First note that the map F is coercive, because $F(x) \geq\left\|x-x_{1}\right\|_{X}^{2} \rightarrow \infty$ as $\|x\|_{X} \rightarrow \infty$. Moreover F is weakly sequentially lower semicontinuous because the map $x \mapsto\|x\|_{X}$ is.

Hence, since X is reflexive, the direct method (cf. "Variationsprinzip", Satz 5.4.1) applies and we obtain $\bar{x} \in X$ satisfying

$$
F(\bar{x})=\inf _{x \in X} F(x) .
$$

(ii) Suppose, $\bar{y} \in X \backslash\{\bar{x}\}$ is another minimiser of F and consider $\bar{z}=\frac{1}{2}(\bar{x}+\bar{y})$. Since we are assuming that X is a Hilbert space, the parallelogram identity holds and implies

$$
\begin{aligned}
\left\|\bar{z}-x_{i}\right\|_{X}^{2} & =\left\|\frac{\bar{x}-x_{i}}{2}+\frac{\bar{y}-x_{i}}{2}\right\|_{X}^{2} \\
& =2\left\|\frac{\bar{x}-x_{i}}{2}\right\|_{X}^{2}+2\left\|\frac{\bar{y}-x_{i}}{2}\right\|_{X}^{2}-\|\underbrace{\frac{\bar{x}-x_{i}}{2}-\frac{\bar{y}-x_{i}}{2}}_{\neq 0}\|_{X}^{2} \\
& <\frac{\left\|\bar{x}-x_{i}\right\|_{X}^{2}}{2}+\frac{\left\|\bar{y}-x_{i}\right\|_{X}^{2}}{2} .
\end{aligned}
$$

Hence, a contradiction follows from

$$
F(\bar{z})<\frac{F(\bar{x})}{2}+\frac{F(\bar{y})}{2}=\inf _{x \in X} F(x)
$$

which proves that the minimiser is unique.
Moreover, if $\|\cdot\|_{X}$ is induced by the scalar product $\langle\cdot, \cdot\rangle_{X}$, then the minimiser $\bar{x} \in X$ of F has the property that

$$
\forall y \in X: \quad 0=\left.\frac{d}{d t}\right|_{t=0} F(\bar{x}+t y)=2 \sum_{i=1}^{n}\left\langle y, \bar{x}-x_{i}\right\rangle_{X}=2\left\langle y, \sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)\right\rangle_{X} .
$$

Consequently,

$$
\sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)=0 \quad \Rightarrow \quad n \bar{x}=\sum_{i=1}^{n} x_{i} \quad \Rightarrow \quad \bar{x}=\sum_{i=1}^{n} \frac{1}{n} x_{i}
$$

which proves that \bar{x} is in the convex hull of $\left\{x_{1}, \ldots, x_{n}\right\} \subset X$.

Solution of 10.5: We claim that $\alpha_{0}=2$. For every $0 \leq \alpha<2$, the map F_{α} is coercive, because

$$
\left|F_{\alpha}(x)\right|=\|x\|_{X}^{2}-|\ell(x)|^{\alpha} \geq\left(\|x\|_{X}^{2-\alpha}-\|\ell\|_{X^{*}}^{\alpha}\right)\|x\|_{X}^{\alpha} \xrightarrow{\|x\|_{X} \rightarrow \infty} \infty .
$$

Moreover F_{α} is weakly sequentially lower semi-continuous, because $x \mapsto\|x\|_{X}^{2}$ is weakly sequentially lower semi-continuous and, by definition of weak convergence, $x \mapsto \ell(x)$ is weakly sequentially continuous.

As a result, since X is reflexive, the direct method (cf. "Variationsprinzip", Satz 5.4.1) applies and we obtain $\bar{x} \in X$ satisfying

$$
F_{\alpha}(\bar{x})=\inf _{x \in X} F_{\alpha}(x) .
$$

Given $\alpha>2$, consider the example $\left(X,\|\cdot\|_{X}\right)=(\mathbb{R},|\cdot|)$ (which is reflexive because any finite dimensional Banach space is reflexive) with $\ell(x)=x$. Then

$$
F_{\alpha}(x)=x^{2}-|x|^{\alpha}=\left(1-|x|^{\alpha-2}\right)|x|^{2} \xrightarrow{x \rightarrow \infty}-\infty .
$$

