11.1. Dual operators **\square**. Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. Recall that if $T \in L(X, Y)$, then its dual operator T^* is in $L(Y^*, X^*)$ and it is characterised by the property

 $\forall x \in X \quad \forall y^* \in Y^*: \quad \langle T^*y^*, x \rangle_{X^* \times X} = \langle y^*, Tx \rangle_{Y^* \times Y}.$

Prove the following facts about dual operators.

- (i) $(\mathrm{Id}_X)^* = \mathrm{Id}_{X^*}$
- (ii) If $T \in L(X, Y)$ and $S \in L(Y, Z)$, then $(S \circ T)^* = T^* \circ S^*$.
- (iii) If $T \in L(X, Y)$ is bijective with inverse $T^{-1} \in L(Y, X)$, then $(T^*)^{-1} = (T^{-1})^*$.
- (iv) Let $\mathcal{I}_X \colon X \hookrightarrow X^{**}$ and $\mathcal{I}_Y \colon Y \hookrightarrow Y^{**}$ be the canonical inclusions. Then,

$$\forall T \in L(X,Y) : \quad \mathcal{I}_Y \circ T = (T^*)^* \circ \mathcal{I}_X.$$

11.2. Isomorphisms and isometries \mathfrak{C} . Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $T \in L(X, Y)$. Prove the following statements.

- (i) If T is an isomorphism, then T^* is an isomorphism.
- (ii) If T is an isometric isomorphism, then T^* is an isometric isomorphism.
- (iii) If X and Y are both reflexive, then the reverse implications of (i) and (ii) hold.
- (iv) If $(X, \|\cdot\|_X)$ is a reflexive Banach space isomorphic to the normed space $(Y, \|\cdot\|_Y)$, then Y is reflexive.

11.3. Operator on compact sequences \square . Consider the space $(c_0, \|\cdot\|_{\ell^{\infty}})$, where as usual $c_0 := \{(x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim_{n \to \infty} x_n = 0\}$ and the subspace $c_c := \{(x_n)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N : x_n = 0\}$. Consider the linear operator

$$T: c_c \subset c_0 \to \ell^1, \qquad (Tx)_n = nx_{n+1}.$$

- (i) Is T extendable to a bounded linear operator $T: c_0 \to \ell^1$? Justify your answer.
- (ii) Compute the adjoint of T, namely determine

$$T^*: D_{T^*} \subset (\ell^1)^* \to (c_0)^*.$$

Notice that the characterization of the subspace D_{T^*} is also required.

(iii) Prove that the operator T is closable. Define the domain $D_{\overline{T}}$ of its closure and determine an element belonging to the set $D_{\overline{T}} \setminus c_c$.

11.4. Compact operators $\overset{\bullet}{\mathbf{x}}$ **.** Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We denote by

$$K(X,Y) = \{T \in L(X,Y) \mid \overline{T(B_1(0))} \subset Y \text{ compact}\}\$$

the set of *compact operators* between X and Y. Prove the following statements.

- (i) $T \in L(X, Y)$ is a compact operator if and only if every bounded sequence $(x_n)_{n \in \mathbb{N}}$ in X has a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $(Tx_{n_k})_{k \in \mathbb{N}}$ is convergent in Y.
- (ii) If $(Y, \|\cdot\|_Y)$ is complete, then K(X, Y) is a closed subspace of L(X, Y).
- (iii) Let $T \in L(X, Y)$. If its range $T(X) \subset Y$ is finite dimensional, then $T \in K(X, Y)$.
- (iv) Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. If T or S is a compact operator, then $S \circ T$ is a compact operator.
- (v) If X is reflexive, then any operator $T \in L(X, Y)$ which maps weakly convergent sequences to norm-convergent sequences is a compact operator.

11.5. Integral operators \mathfrak{C} . Let $m \in \mathbb{N}$ and let $\Omega \subset \mathbb{R}^m$ be a bounded subset. Given $k \in L^2(\Omega \times \Omega)$, consider the linear operator $K \colon L^2(\Omega) \to L^2(\Omega)$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) \, \mathrm{d}y$$

- (i) Prove that K is well-defined, i.e. $Kf \in L^2(\Omega)$ for any $f \in L^2(\Omega)$.
- (ii) Prove that K is a compact operator.

11.6. Operator that is (almost) injective \square . Suppose that X, Y, Z are Banach spaces over \mathbb{R} , let $P \in L(X, Y)$ and assume that there exists a compact map $J \in L(X, Z)$.

Suppose also that there is a constant C > 0 such that for all $x \in X$ one has

$$||x||_{X} \le C \Big(||Px||_{Y} + ||Jx||_{Z} \Big) \tag{(*)}$$

(i) If P is injective, show that there is another constant C'>0 such that for all $x\in X$ one has

$$\|x\|_X \le C' \|Px\|_Y.$$

(ii) Without assuming that P is injective show that (*) implies that $\ker(P)$ has finite dimension. Hence, prove the existence of a closed subspace W of X with $X = \ker(P) \oplus W$ (i.e. a topologically complementary subspace W of $\ker(P)$ in X). Then exploit part (i) to show that for all $x \in W$ one has

$$||x||_X \le C'' ||Px||_Y$$

for some constant C'' > 0.

11. Solutions

Solution of 11.1:

(i) Let $x \in X$ and $x^* \in X^*$ be arbitrary. By definition of $(\mathrm{Id}_X)^* \colon X^* \to X^*$, we have

$$\left\langle (\mathrm{Id}_X)^* x^*, x \right\rangle_{X^* \times X} = \left\langle x^*, \mathrm{Id}_X x \right\rangle_{X^* \times X} = \langle x^*, x \rangle_{X^* \times X^*}.$$

Since $x \in X$ is arbitrary, $(\mathrm{Id}_X)^* x^* = x^*$. Since $x^* \in X^*$ is arbitrary, $(\mathrm{Id}_X)^* = \mathrm{Id}_{(X^*)}$. (ii) Let $z^* \in Z^*$ and $x \in X$ be arbitrary. Then, $(S \circ T)^* = T^* \circ S^*$ follows from

$$\begin{split} \left\langle (S \circ T)^* z^*, x \right\rangle_{X^* \times X} &= \left\langle z^*, S(Tx) \right\rangle_{Z^* \times Z} \\ &= \left\langle S^* z^*, Tx \right\rangle_{Y^* \times Y} = \left\langle T^*(S^* z^*), x \right\rangle_{X^* \times X} \end{split}$$

(iii) To prove $(T^*)^{-1} = (T^{-1})^*$, we apply the results from (i) and (ii) and obtain

$$T^* \circ (T^{-1})^* = (T^{-1} \circ T)^* = (\mathrm{Id}_X)^* = \mathrm{Id}_{X^*}, (T^{-1})^* \circ T^* = (T \circ T^{-1})^* = (\mathrm{Id}_Y)^* = \mathrm{Id}_{Y^*}.$$

(iv) Let $x \in X$ and $y^* \in Y^*$ be arbitrary. Then, $(\mathcal{I}_Y \circ T) = (T^*)^* \circ \mathcal{I}_X$ follows from

$$\left\langle (\mathcal{I}_Y \circ T)x, y^* \right\rangle_{Y^{**} \times Y^*} = \left\langle Tx, y^* \right\rangle_{Y \times Y^*} = \left\langle x, T^*y^* \right\rangle_{X \times X^*} \\ = \left\langle \mathcal{I}_X x, T^*y^* \right\rangle_{X^{**} \times X^*} = \left\langle (T^*)^* (\mathcal{I}_X x), y^* \right\rangle_{Y^{**} \times Y^*}.$$

Solution of 11.2:

(i) The dual operator T^* of any $T \in L(X, Y)$ is invertible according to Problem 11.1 (iii) and its inverse is $(T^*)^{-1} = (T^{-1})^*$. Moreover, the assumption $T^{-1} \in L(Y, X)$ implies $(T^{-1})^* \in L(X^*, Y^*)$. Hence, T^* is an isomorphism.

(ii) If T is an isometric isomorphism, then T^* is an isomorphism by (i) and

$$||T^*y^*||_{X^*} = \sup_{||x||_X \le 1} |\langle T^*y^*, x \rangle_{X^* \times X}| = \sup_{||Tx||_Y = ||x||_X \le 1} |\langle y^*, Tx \rangle_{Y^* \times Y}| = ||y^*||_{Y^*}.$$

(iii) If X and Y are reflexive, $\mathcal{I}_X \colon X \to X^{**}$ and $\mathcal{I}_Y \colon Y \to Y^{**}$ are bijective isometries. If T^* is an (isometric) isomorphism, then (i) and (ii) imply that $(T^*)^*$ is an (isometric) isomorphism. Applying the result of Problem 11.1 (iv), we see that the same holds for

$$T = \mathcal{I}_Y^{-1} \circ (T^*)^* \circ \mathcal{I}_X.$$

(iv) Since X is reflexive by assumption, \mathcal{I}_X is an isomorphism. Suppose, $T: X \to Y$ is an isomorphism. Applying part (i) twice, $(T^*)^*$ is an isomorphism. Moreover,

$$\mathcal{I}_Y = (T^*)^* \circ \mathcal{I}_X \circ T^{-1}$$

according to Problem 11.1 (iv). Since \mathcal{I}_Y is a composition of isomorphisms, Y is reflexive.

Solution of 11.3:

(i) The operator T is not extendable to a bounded linear operator $T: c_0 \to \ell^1$. In fact, denoting $e_k = (0, \ldots, 0, 1, 0, \ldots, 0) \in c_c$ (where the 1 is at k-th position), we have for all $k \in \mathbb{N}$

$$||Te_k||_{\ell^1} = k - 1 = (k - 1)||e_k||_{\ell^{\infty}}.$$

(ii) Since $(\ell^1)^* \cong \ell^\infty$ and $(c_0)^* \cong \ell^1$ (compare Problem 8.1) we have

$$D_{T^*} = \{ y \in \ell^{\infty} \mid c_c \ni x \mapsto \sum_{n \in \mathbb{N}} y_n(Tx)_n \text{ is continuous} \}.$$

Fixed $y \in \ell^{\infty}$, the map $A \colon (c_c, \|\cdot\|_{\ell^{\infty}}) \to \mathbb{R}$ given by

$$Ax = \sum_{n \in \mathbb{N}} y_n (Tx)_n = \sum_{n=0}^{\infty} y_n nx_{n+1}$$

is continuous if

$$\sum_{n\in\mathbb{N}}|ny_n|<\infty$$

because

$$|Ax| = \left|\sum_{n \in \mathbb{N}} ny_n x_{n+1}\right| \le ||x||_{\ell^{\infty}} \sum_{n \in \mathbb{N}} |ny_n|.$$

Conversely, if A is continuous, we consider $x^{(N)} = (x_n^{(N)})_{n \in \mathbb{N}} \in c_c$ with $x_n^{(N)} = \frac{y_{n-1}}{|y_{n-1}|}$ for $1 \leq n \leq N$ and $x_n^{(N)} = 0$ for n > N and n = 0 to obtain

$$||A|| = ||A|| ||x^{(N)}|| \ge |Ax^{(N)}| = \Big|\sum_{n=0}^{N-1} |ny_n|\Big|.$$

Since $N \in \mathbb{N}$ is arbitrary, we conclude

$$\sum_{n\in\mathbb{N}}|ny_n|<\infty.$$

Hence, $D_{T^*} = \{ y \in \ell^{\infty} \mid \sum_{n \in \mathbb{N}} |ny_n| < \infty \}$ and

$$(T^*y)_n = \begin{cases} (n-1)y_{n-1} & (n \ge 1), \\ 0 & (n=0). \end{cases}$$

(iii) The operator T is closable. Indeed, suppose $x^{(k)} \in c_c$ for $k \in \mathbb{N}$ satisfy

$$||x^{(k)}||_{\ell^{\infty}} \to 0, \qquad ||Tx^{(k)} - y||_{\ell^{1}} \to 0 \qquad (k \to \infty)$$

for some $y \in \ell^1$. For every fixed $n \in \mathbb{N}$ in particular,

$$x_n^{(k)} \to 0,$$
 $n x_n^{(k)} \to y_n$ $(k \to \infty)$

which implies $y_n = 0$ for all $n \in \mathbb{N}$. Hence, T is closable.

Moreover, by definition,

$$D_{\overline{T}} = \{ x \in c_0 \mid \exists (x^{(k)})_{k \in \mathbb{N}} \subset c_c, \ y \in \ell^1 : \ (x^{(k)}, Tx^{(k)}) \to (x, y) \}.$$

Consider $x = (n^{-3})_{n \in \mathbb{N}} \in c_0 \setminus c_c$ and $y = (n^{-2})_{n \in \mathbb{N}} \in \ell^1$. Let $x^{(k)} \in c_c$ be the truncation of x at index k. Then, $x^{(k)} \to x$ in c_0 and

$$||Tx^{(k)} - y||_{\ell^1} = \sum_{n=k}^{\infty} n^{-2} \xrightarrow{k \to \infty} 0.$$

Therefore, $x \in D_{\overline{T}}$.

Solution of 11.4:

(i) We prove the two implications separately.

" \Rightarrow " Let $T \in L(X, Y)$ be a compact operator. Let $(x_n)_{n \in \mathbb{N}}$ be a bounded sequence in X. Then there exists M > 0 such that $||x_n||_X < M$ for all $n \in \mathbb{N}$. In particular, $\frac{1}{M}x_n \in B_1(0) \subset X$ and $\frac{1}{M}Tx_n \in T(B_1(0))$ for every $n \in \mathbb{N}$. Since $\overline{T(B_1(0))} \subset Y$ is compact, a subsequence $(\frac{1}{M}Tx_{n_k})_{k \in \mathbb{N}}$ converges in Y. Hence, $(Tx_{n_k})_{k \in \mathbb{N}}$ also converges.

" \Leftarrow " Conversely, let $(y_n)_{n\in\mathbb{N}}$ be any sequence in $\overline{T(B_1(0))}$. For every $n \in \mathbb{N}$ there exists $y'_n \in T(B_1(0))$ such that $||y_n - y'_n||_Y \leq \frac{1}{n}$. Since there exists a sequence $(x'_n)_{n\in\mathbb{N}}$ in $B_1(0) \subset X$ such that $Tx'_n = y'_n$, a subsequence $y'_{n_k} \to y$ converges in Y as $k \to \infty$ by assumption. Since $||y_{n_k} - y||_Y \leq ||y_{n_k} - y'_n|| + ||y'_{n_k} - y||_Y \to 0$ as $k \to \infty$ we conclude that a subsequence of $(y_n)_{n\in\mathbb{N}}$ converges. Being closed, $\overline{T(B_1(0))}$ must contain the limit y, which proves that $\overline{T(B_1(0))}$ is compact, i.e. T is a compact operator.

(ii) Part (i) and linearity of the limit imply that the set of compact operators $K(X,Y) \subset L(X,Y)$ is a linear subspace. To prove that this subspace is closed, let $(T_k)_{k\in\mathbb{N}}$ be a sequence in K(X,Y) such that $||T_k - T||_{L(X,Y)} \to 0$ for some $T \in L(X,Y)$ as $k \to \infty$. To show $T \in K(X,Y)$, consider a bounded sequence $(x_n)_{n\in\mathbb{N}}$ in X and choose the nested, unbounded subsets $\mathbb{N} \supset \Lambda_1 \supseteq \Lambda_2 \supseteq \ldots$ such that $(T_k x_n)_{n\in\Lambda_k}$ is convergent in Y with limit point $y_k \in Y$. This is possible by (i), since T_k is a compact operator for every $k \in \mathbb{N}$. Let $\Lambda \subset \mathbb{N}$ be the corresponding diagonal sequence (i.e. the k-th number in Λ is the k-th number in Λ_k). By continuity of $\|\cdot\|_Y$, we can estimate

$$\|y_k - y_m\|_Y = \lim_{\Lambda \ni n \to \infty} \|T_k x_n - T_m x_n\|_Y \le \|T_k - T_m\|_{L(X,Y)} \sup_{n \in \Lambda} \|x_n\|_X$$

for any $k, m \in \mathbb{N}$. Since $(T_k)_{k \in \mathbb{N}}$ is convergent in L(X, Y), we conclude that $(y_k)_{k \in \mathbb{N}}$ is a Cauchy sequence in Y. Since $(Y, \|\cdot\|_Y)$ is assumed to be complete, $y_k \to y$ for some $y \in Y$

as $k \to \infty$. We claim that $(Tx_n)_{n \in \Lambda}$ also converges to y which would finish the proof of $T \in K(X, Y)$ by (i). Let $\varepsilon > 0$ and choose a fixed $\kappa \in \mathbb{N}$ such that

$$||T - T_{\kappa}||_{L(X,Y)} < \frac{\varepsilon}{3\sup_{n \in \Lambda} ||x_n||_X}, \qquad ||y_{\kappa} - y||_Y \le \frac{\varepsilon}{3}.$$

Since $T_{\kappa}x_n \to y_{\kappa}$ as $\Lambda \ni n \to \infty$, there exists $N \in \Lambda$ such that for every $\Lambda \ni n \ge N$ $||T_{\kappa}x_n - y_{\kappa}|| \le \frac{\varepsilon}{3}$. Finally, the claim follows from the estimate

$$||Tx_n - y||_Y \le ||Tx_n - T_{\kappa}x_n||_Y + ||T_{\kappa}x_n - y_{\kappa}||_Y + ||y_{\kappa} - y||_Y$$

$$\le ||T - T_{\kappa}||_{L(X,Y)} \sup_{n \in \Lambda} ||x_n||_X + ||T_{\kappa}x_n - y_{\kappa}||_Y + ||y_{\kappa} - y||_Y < \varepsilon$$

which holds for every $\Lambda \ni n \ge N$.

(iii) The image of $B_1(0)$ under $T \in L(X, Y)$ is bounded. If $T(X) \subset Y$ is of finite dimension, then $\overline{T(B_1(0))}$ is compact as a bounded, closed subset of T(X).

(iv) Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. Let $(x_n)_{n \in \mathbb{N}}$ be any bounded sequence in X.

Suppose T is a compact operator. Then, a subsequence $(Tx_{n_k})_{k\in\mathbb{N}}$ is convergent in Y by (i). Since S is continuous, $(STx_{n_k})_{k\in\mathbb{N}}$ is convergent in Z, which by (i) proves that $S \circ T$ is a compact operator.

Suppose S is a compact operator. Since T is continuous, the sequence $(Tx_n)_{n\in\mathbb{N}}$ is bounded in Y. Then, a subsequence $(STx_{n_k})_{k\in\mathbb{N}}$ is convergent in Z by (i), which again proves that $S \circ T$ is a compact operator.

(v) Let $(x_n)_{n\in\mathbb{N}}$ be any bounded sequence in X. Since X is reflexive, a subsequence $(x_{n_k})_{k\in\mathbb{N}}$ converges weakly in X by the Eberlein–Šmulian theorem. Then, $(Tx_{n_k})_{k\in\mathbb{N}}$ is norm-convergent in Y by assumption and (i) implies that T is a compact operator.

Solution of 11.5:

(i) Let $f \in L^2(\Omega)$. Then Hölder's inequality and Fubini's theorem imply

$$\begin{split} \int_{\Omega} |(Kf)(x)|^2 \, \mathrm{d}x &= \int_{\Omega} \left| \int_{\Omega} k(x,y) f(y) \, \mathrm{d}y \right|^2 \mathrm{d}x \le \int_{\Omega} \left(\int_{\Omega} |k(x,y) f(y)| \, \mathrm{d}y \right)^2 \mathrm{d}x \\ &\le \int_{\Omega} \left(\int_{\Omega} |k(x,y)|^2 \, \mathrm{d}y \right) \|f\|_{L^2(\Omega)}^2 \, \mathrm{d}x = \|k\|_{L^2(\Omega \times \Omega)}^2 \|f\|_{L^2(\Omega)}^2. \end{split}$$

Since $k \in L^2(\Omega \times \Omega)$ by assumption, $||Kf||_{L^2(\Omega)} \leq ||k||_{L^2(\Omega \times \Omega)} ||f||_{L^2(\Omega)} < \infty$ follows.

(ii) Since the space $L^2(\Omega)$ is reflexive (which follows from being a Hilbert space), Problem 11.4 (v) implies that $K: L^2(\Omega) \to L^2(\Omega)$ is a compact operator, if K maps weakly convergent sequences to norm-convergent sequences.

Let $(f_n)_{n\in\mathbb{N}}$ be sequence in $L^2(\Omega)$ such that $f_n \xrightarrow{w} f$ as $n \to \infty$ for some $f \in L^2(\Omega)$. Since $k \in L^2(\Omega \times \Omega)$, Fubini's theorem implies that $k(x, \cdot) \in L^2(\Omega)$ for almost every $x \in \Omega$. Weak convergence therefore implies

$$(Kf_n)(x) = \left\langle k(x, \cdot), f_n \right\rangle_{L^2(\Omega)} \xrightarrow{n \to \infty} \left\langle k(x, \cdot), f \right\rangle_{L^2(\Omega)} = (Kf)(x)$$

for almost every $x \in \Omega$. As weakly convergent sequence, $(f_n)_{n \in \mathbb{N}}$ is bounded: there exists $C \in \mathbb{R}$ such that $||f_n||_{L^2(\Omega)} \leq C$ for every $n \in \mathbb{N}$. By Hölder's inequality,

$$|(Kf_n)(x)| \le \int_{\Omega} |k(x,y)f_n(y)| \, \mathrm{d}y \le ||k(x,\cdot)||_{L^2(\Omega)} ||f_n||_{L^2(\Omega)} \le C ||k(x,\cdot)||_{L^2(\Omega)}.$$

The assumption $k \in L^2(\Omega \times \Omega)$ and Fubini's theorem imply that the function $x \mapsto C \|k(x, \cdot)\|_{L^2(\Omega)}$ is in $L^2(\Omega)$. Thus, $(Kf_n)(x)$ is dominated by a function in $L^2(\Omega)$. Since $(Kf_n)(x)$ converges pointwise for almost every $x \in \Omega$ to a function in $L^2(\Omega)$, the dominated convergence theorem implies L^2 -convergence $\|Kf_n - Kf\|_{L^2(\Omega)} \to 0$.

Solution of 11.6:

(i) For the sake of a contradiction, assume the claimed inequality is false: thus for any $k \ge 1$ one can find $x_k \in X$ with $||x_k||_X = 1$ and $||Px_k||_Y \le \frac{1}{k}$. By compactness of the map $J: X \to Z$ one can find $\Lambda \subset \mathbb{N}$ such that

$$Jx_k \to z_\infty$$
 in $(Z, \|\cdot\|_Z)$ $(k \to \infty, k \in \Lambda)$.

At this stage, using (*) with $x_l - x_m$ in lieu of x, namely

$$||x_l - x_m||_X \le C \Big(||P(x_l - x_m)||_Y + ||J(x_l - x_m)||_Z \Big).$$

one gets that the sequence $(x_k)_{k \in \Lambda}$ is Cauchy in $(X, \|\cdot\|_X)$ so by completeness $x_k \to x_\infty$ in $(X, \|\cdot\|_X)$ $(k \to \infty, k \in \Lambda)$. Since $P \in L(X, Y)$ we have

$$x_k \to x_\infty \implies Px_k \to Px_\infty \ (k \to \infty, \ k \in \Lambda)$$

but one the other hand $Px_k \to 0$ by construction, so we conclude $Px_{\infty} = 0$ and hence, by injectivity $x_{\infty} = 0$. However it should be $||x_{\infty}||_X = 1$ by the fact that $||x_k||_X = 1$ for any $k \ge 1$, contradiction.

(ii) Let us prove that ker(P) has finite dimension by showing that $B_1(0; \ker(P))$ is relatively compact in $(X, \|\cdot\|_X)$. To this scope, pick $(x_k)_{k\in\mathbb{N}} \subset \ker(P)$ a sequence with $\|x_k\|_X < 1$ and let us prove it has a converging subsequence. Observe that inequality (*), when restricted to $x \in \ker(P)$ takes the form

$$\|x\|_X \le C \|Jx\|_Z.$$

Hence (arguing as above) one first gets $Jx_k \to z_\infty$ $(k \to \infty, k \in \Lambda)$, by compactness of J, and then, by the inequality above, $(x_k)_{k \in \Lambda}$ is Cauchy in $(X, \|\cdot\|_X)$ hence convergent to x_∞ .

At this stage, the fact that $\ker(P)$ is topologically complemented in X follows by Problem 7.2, so let us write $X = \ker(P) \oplus W$ with $W \subset X$ closed (i.e. $\overline{W} = W$) by Problem 3.4.

Lastly, the restricted operator $P^{\rho} \colon W \to Y$ is linear, bounded and one can invoke the result of part (i). With W in lieu of X and P^{ρ} in lieu of P to conclude that $||x||_X \leq C'' ||Px||_Z$ uniformly for $x \in W \subset X$, which completes the proof.