11.1. Dual operators \mathbb{G}. Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed spaces. Recall that if $T \in L(X, Y)$, then its dual operator T^{*} is in $L\left(Y^{*}, X^{*}\right)$ and it is characterised by the property

$$
\forall x \in X \quad \forall y^{*} \in Y^{*}: \quad\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X}=\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y} .
$$

Prove the following facts about dual operators.
(i) $\left(\operatorname{Id}_{X}\right)^{*}=\operatorname{Id}_{X^{*}}$
(ii) If $T \in L(X, Y)$ and $S \in L(Y, Z)$, then $(S \circ T)^{*}=T^{*} \circ S^{*}$.
(iii) If $T \in L(X, Y)$ is bijective with inverse $T^{-1} \in L(Y, X)$, then $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
(iv) Let $\mathcal{I}_{X}: X \hookrightarrow X^{* *}$ and $\mathcal{I}_{Y}: Y \hookrightarrow Y^{* *}$ be the canonical inclusions. Then,

$$
\forall T \in L(X, Y): \quad \mathcal{I}_{Y} \circ T=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X} .
$$

11.2. Isomorphisms and isometries Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed spaces and $T \in L(X, Y)$. Prove the following statements.
(i) If T is an isomorphism, then T^{*} is an isomorphism.
(ii) If T is an isometric isomorphism, then T^{*} is an isometric isomorphism.
(iii) If X and Y are both reflexive, then the reverse implications of (i) and (ii) hold.
(iv) If $\left(X,\|\cdot\|_{X}\right)$ is a reflexive Banach space isomorphic to the normed space $\left(Y,\|\cdot\|_{Y}\right)$, then Y is reflexive.
11.3. Operator on compact sequences $\square \square$. Consider the space $\left(c_{0},\|\cdot\|_{\ell \infty}\right)$, where as usual $c_{0}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim _{n \rightarrow \infty} x_{n}=0\right\}$ and the subspace $c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid\right.$ $\left.\exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}$. Consider the linear operator

$$
T: c_{c} \subset c_{0} \rightarrow \ell^{1}, \quad(T x)_{n}=n x_{n+1}
$$

(i) Is T extendable to a bounded linear operator $T: c_{0} \rightarrow \ell^{1}$? Justify your answer.
(ii) Compute the adjoint of T, namely determine

$$
T^{*}: D_{T^{*}} \subset\left(\ell^{1}\right)^{*} \rightarrow\left(c_{0}\right)^{*} .
$$

Notice that the characterization of the subspace $D_{T^{*}}$ is also required.
(iii) Prove that the operator T is closable. Define the domain $D_{\bar{T}}$ of its closure and determine an element belonging to the set $D_{\bar{T}} \backslash c_{c}$.
11.4. Compact operators $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed spaces. We denote by

$$
K(X, Y)=\left\{T \in L(X, Y) \mid \overline{T\left(B_{1}(0)\right)} \subset Y \text { compact }\right\}
$$

the set of compact operators between X and Y. Prove the following statements.
(i) $T \in L(X, Y)$ is a compact operator if and only if every bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X has a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $\left(T x_{n_{k}}\right)_{k \in \mathbb{N}}$ is convergent in Y.
(ii) If $\left(Y,\|\cdot\|_{Y}\right)$ is complete, then $K(X, Y)$ is a closed subspace of $L(X, Y)$.
(iii) Let $T \in L(X, Y)$. If its range $T(X) \subset Y$ is finite dimensional, then $T \in K(X, Y)$.
(iv) Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. If T or S is a compact operator, then $S \circ T$ is a compact operator.
(v) If X is reflexive, then any operator $T \in L(X, Y)$ which maps weakly convergent sequences to norm-convergent sequences is a compact operator.
11.5. Integral operators . Let $m \in \mathbb{N}$ and let $\Omega \subset \mathbb{R}^{m}$ be a bounded subset. Given $k \in L^{2}(\Omega \times \Omega)$, consider the linear operator $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ defined by

$$
(K f)(x)=\int_{\Omega} k(x, y) f(y) \mathrm{d} y
$$

(i) Prove that K is well-defined, i.e. $K f \in L^{2}(\Omega)$ for any $f \in L^{2}(\Omega)$.
(ii) Prove that K is a compact operator.
11.6. Operator that is (almost) injective [\square. Suppose that X, Y, Z are Banach spaces over \mathbb{R}, let $P \in L(X, Y)$ and assume that there exists a compact map $J \in L(X, Z)$.

Suppose also that there is a constant $C>0$ such that for all $x \in X$ one has

$$
\begin{equation*}
\|x\|_{X} \leq C\left(\|P x\|_{Y}+\|J x\|_{Z}\right) \tag{*}
\end{equation*}
$$

(i) If P is injective, show that there is another constant $C^{\prime}>0$ such that for all $x \in X$ one has

$$
\|x\|_{X} \leq C^{\prime}\|P x\|_{Y}
$$

(ii) Without assuming that P is injective show that $(*)$ implies that $\operatorname{ker}(P)$ has finite dimension. Hence, prove the existence of a closed subspace W of X with $X=$ $\operatorname{ker}(P) \oplus W$ (i.e. a topologically complementary subspace W of $\operatorname{ker}(P)$ in X). Then exploit part (i) to show that for all $x \in W$ one has

$$
\|x\|_{X} \leq C^{\prime \prime}\|P x\|_{Y}
$$

for some constant $C^{\prime \prime}>0$.

11. Solutions

Solution of 11.1:

(i) Let $x \in X$ and $x^{*} \in X^{*}$ be arbitrary. By definition of $\left(\operatorname{Id}_{X}\right)^{*}: X^{*} \rightarrow X^{*}$, we have

$$
\left\langle\left(\operatorname{Id}_{X}\right)^{*} x^{*}, x\right\rangle_{X^{*} \times X}=\left\langle x^{*}, \operatorname{Id}_{X} x\right\rangle_{X^{*} \times X}=\left\langle x^{*}, x\right\rangle_{X^{*} \times X^{*}} .
$$

Since $x \in X$ is arbitrary, $\left(\operatorname{Id}_{X}\right)^{*} x^{*}=x^{*}$. Since $x^{*} \in X^{*}$ is arbitrary, $\left(\operatorname{Id}_{X}\right)^{*}=\operatorname{Id}_{\left(X^{*}\right)}$.
(ii) Let $z^{*} \in Z^{*}$ and $x \in X$ be arbitrary. Then, $(S \circ T)^{*}=T^{*} \circ S^{*}$ follows from

$$
\begin{aligned}
\left\langle(S \circ T)^{*} z^{*}, x\right\rangle_{X^{*} \times X} & =\left\langle z^{*}, S(T x)\right\rangle_{Z^{*} \times Z} \\
& =\left\langle S^{*} z^{*}, T x\right\rangle_{Y^{*} \times Y}=\left\langle T^{*}\left(S^{*} z^{*}\right), x\right\rangle_{X^{*} \times X} .
\end{aligned}
$$

(iii) To prove $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$, we apply the results from (i) and (ii) and obtain

$$
\begin{aligned}
& T^{*} \circ\left(T^{-1}\right)^{*}=\left(T^{-1} \circ T\right)^{*}=\left(\operatorname{Id}_{X}\right)^{*}=\operatorname{Id}_{X^{*}}, \\
& \left(T^{-1}\right)^{*} \circ T^{*}=\left(T \circ T^{-1}\right)^{*}=\left(\operatorname{Id}_{Y}\right)^{*}=\operatorname{Id}_{Y^{*}} .
\end{aligned}
$$

(iv) Let $x \in X$ and $y^{*} \in Y^{*}$ be arbitrary. Then, $\left(\mathcal{I}_{Y} \circ T\right)=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X}$ follows from

$$
\begin{aligned}
\left\langle\left(\mathcal{I}_{Y} \circ T\right) x, y^{*}\right\rangle_{Y^{* *} \times Y^{*}} & =\left\langle T x, y^{*}\right\rangle_{Y \times Y^{*}}=\left\langle x, T^{*} y^{*}\right\rangle_{X \times X^{*}} \\
& =\left\langle\mathcal{I}_{X} x, T^{*} y^{*}\right\rangle_{X^{* *} \times X^{*}}=\left\langle\left(T^{*}\right)^{*}\left(\mathcal{I}_{X} x\right), y^{*}\right\rangle_{Y^{* *} \times Y^{*}}
\end{aligned}
$$

Solution of 11.2:

(i) The dual operator T^{*} of any $T \in L(X, Y)$ is invertible according to Problem 11.1 (iii) and its inverse is $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. Moreover, the assumption $T^{-1} \in L(Y, X)$ implies $\left(T^{-1}\right)^{*} \in L\left(X^{*}, Y^{*}\right)$. Hence, T^{*} is an isomorphism.
(ii) If T is an isometric isomorphism, then T^{*} is an isomorphism by (i) and

$$
\left\|T^{*} y^{*}\right\|_{X^{*}}=\sup _{\|x\|_{X} \leq 1}\left|\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X}\right|=\sup _{\|T x\|_{Y}=\|x\|_{X} \leq 1}\left|\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y}\right|=\left\|y^{*}\right\|_{Y^{*}} .
$$

(iii) If X and Y are reflexive, $\mathcal{I}_{X}: X \rightarrow X^{* *}$ and $\mathcal{I}_{Y}: Y \rightarrow Y^{* *}$ are bijective isometries. If T^{*} is an (isometric) isomorphism, then (i) and (ii) imply that $\left(T^{*}\right)^{*}$ is an (isometric) isomorphism. Applying the result of Problem 11.1 (iv), we see that the same holds for

$$
T=\mathcal{I}_{Y}^{-1} \circ\left(T^{*}\right)^{*} \circ \mathcal{I}_{X} .
$$

(iv) Since X is reflexive by assumption, \mathcal{I}_{X} is an isomorphism. Suppose, $T: X \rightarrow Y$ is an isomorphism. Applying part (i) twice, $\left(T^{*}\right)^{*}$ is an isomorphism. Moreover,

$$
\mathcal{I}_{Y}=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X} \circ T^{-1}
$$

according to Problem 11.1 (iv). Since \mathcal{I}_{Y} is a composition of isomorphisms, Y is reflexive.

Solution of 11.3:

(i) The operator T is not extendable to a bounded linear operator $T: c_{0} \rightarrow \ell^{1}$. In fact, denoting $e_{k}=(0, \ldots, 0,1,0, \ldots, 0) \in c_{c}$ (where the 1 is at k-th position), we have for all $k \in \mathbb{N}$

$$
\left\|T e_{k}\right\|_{\ell^{1}}=k-1=(k-1)\left\|e_{k}\right\|_{\ell_{\infty}} .
$$

(ii) Since $\left(\ell^{1}\right)^{*} \cong \ell^{\infty}$ and $\left(c_{0}\right)^{*} \cong \ell^{1}$ (compare Problem 8.1) we have

$$
D_{T^{*}}=\left\{y \in \ell^{\infty} \mid c_{c} \ni x \mapsto \sum_{n \in \mathbb{N}} y_{n}(T x)_{n} \text { is continuous }\right\} .
$$

Fixed $y \in \ell^{\infty}$, the map $A:\left(c_{c},\|\cdot\|_{\ell \infty}\right) \rightarrow \mathbb{R}$ given by

$$
A x=\sum_{n \in \mathbb{N}} y_{n}(T x)_{n}=\sum_{n=0}^{\infty} y_{n} n x_{n+1}
$$

is continuous if

$$
\sum_{n \in \mathbb{N}}\left|n y_{n}\right|<\infty
$$

because

$$
|A x|=\left|\sum_{n \in \mathbb{N}} n y_{n} x_{n+1}\right| \leq\|x\|_{\ell \infty} \sum_{n \in \mathbb{N}}\left|n y_{n}\right| .
$$

Conversely, if A is continuous, we consider $x^{(N)}=\left(x_{n}^{(N)}\right)_{n \in \mathbb{N}} \in c_{c}$ with $x_{n}^{(N)}=\frac{y_{n-1}}{\left|y_{n-1}\right|}$ for $1 \leq n \leq N$ and $x_{n}^{(N)}=0$ for $n>N$ and $n=0$ to obtain

$$
\|A\|=\|A\|\left\|x^{(N)}\right\| \geq\left|A x^{(N)}\right|=\left|\sum_{n=0}^{N-1}\right| n y_{n}| | .
$$

Since $N \in \mathbb{N}$ is arbitrary, we conclude

$$
\sum_{n \in \mathbb{N}}\left|n y_{n}\right|<\infty .
$$

Hence, $D_{T^{*}}=\left\{y \in \ell^{\infty}\left|\sum_{n \in \mathbb{N}}\right| n y_{n} \mid<\infty\right\}$ and

$$
\left(T^{*} y\right)_{n}= \begin{cases}(n-1) y_{n-1} & (n \geq 1) \\ 0 & (n=0)\end{cases}
$$

(iii) The operator T is closable. Indeed, suppose $x^{(k)} \in c_{c}$ for $k \in \mathbb{N}$ satisfy

$$
\left\|x^{(k)}\right\|_{\ell \infty} \rightarrow 0, \quad\left\|T x^{(k)}-y\right\|_{\ell^{1}} \rightarrow 0 \quad(k \rightarrow \infty)
$$

for some $y \in \ell^{1}$. For every fixed $n \in \mathbb{N}$ in particular,

$$
x_{n}^{(k)} \rightarrow 0, \quad n x_{n}^{(k)} \rightarrow y_{n} \quad(k \rightarrow \infty)
$$

which implies $y_{n}=0$ for all $n \in \mathbb{N}$. Hence, T is closable.
Moreover, by definition,

$$
D_{\bar{T}}=\left\{x \in c_{0} \mid \exists\left(x^{(k)}\right)_{k \in \mathbb{N}} \subset c_{c}, y \in \ell^{1}:\left(x^{(k)}, T x^{(k)}\right) \rightarrow(x, y)\right\} .
$$

Consider $x=\left(n^{-3}\right)_{n \in \mathbb{N}} \in c_{0} \backslash c_{c}$ and $y=\left(n^{-2}\right)_{n \in \mathbb{N}} \in \ell^{1}$. Let $x^{(k)} \in c_{c}$ be the truncation of x at index k. Then, $x^{(k)} \rightarrow x$ in c_{0} and

$$
\left\|T x^{(k)}-y\right\|_{\ell^{1}}=\sum_{n=k}^{\infty} n^{-2} \xrightarrow{k \rightarrow \infty} 0 .
$$

Therefore, $x \in D_{\bar{T}}$.

Solution of 11.4:

(i) We prove the two implications separately.
" \Rightarrow " Let $T \in L(X, Y)$ be a compact operator. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence in X. Then there exists $M>0$ such that $\left\|x_{n}\right\|_{X}<M$ for all $n \in \mathbb{N}$. In particular, $\frac{1}{M} x_{n} \in B_{1}(0) \subset X$ and $\frac{1}{M} T x_{n} \in T\left(B_{1}(0)\right)$ for every $n \in \mathbb{N}$. Since $\overline{T\left(B_{1}(0)\right)} \subset Y$ is compact, a subsequence $\left(\frac{1}{M} T x_{n_{k}}\right)_{k \in \mathbb{N}}$ converges in Y. Hence, $\left(T x_{n_{k}}\right)_{k \in \mathbb{N}}$ also converges.
" \Leftarrow " Conversely, let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be any sequence in $\overline{T\left(B_{1}(0)\right)}$. For every $n \in \mathbb{N}$ there exists $y_{n}^{\prime} \in T\left(B_{1}(0)\right)$ such that $\left\|y_{n}-y_{n}^{\prime}\right\|_{Y} \leq \frac{1}{n}$. Since there exists a sequence $\left(x_{n}^{\prime}\right)_{n \in \mathbb{N}}$ in $B_{1}(0) \subset X$ such that $T x_{n}^{\prime}=y_{n}^{\prime}$, a subsequence $y_{n_{k}}^{\prime} \rightarrow y$ converges in Y as $k \rightarrow \infty$ by assumption. Since $\left\|y_{n_{k}}-y\right\|_{Y} \leq\left\|y_{n_{k}}-y_{n_{k}}^{\prime}\right\|+\left\|y_{n_{k}}^{\prime}-y\right\|_{Y} \rightarrow 0$ as $k \rightarrow \infty$ we conclude that a subsequence of $\left(y_{n}\right)_{n \in \mathbb{N}}$ converges. Being closed, $\overline{T\left(B_{1}(0)\right)}$ must contain the limit y, which proves that $\overline{T\left(B_{1}(0)\right)}$ is compact, i.e. T is a compact operator.
(ii) Part (i) and linearity of the limit imply that the set of compact operators $K(X, Y) \subset$ $L(X, Y)$ is a linear subspace. To prove that this subspace is closed, let $\left(T_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $K(X, Y)$ such that $\left\|T_{k}-T\right\|_{L(X, Y)} \rightarrow 0$ for some $T \in L(X, Y)$ as $k \rightarrow \infty$. To show $T \in K(X, Y)$, consider a bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X and choose the nested, unbounded subsets $\mathbb{N} \supset \Lambda_{1} \supseteq \Lambda_{2} \supseteq \ldots$ such that $\left(T_{k} x_{n}\right)_{n \in \Lambda_{k}}$ is convergent in Y with limit point $y_{k} \in Y$. This is possible by (i), since T_{k} is a compact operator for every $k \in \mathbb{N}$. Let $\Lambda \subset \mathbb{N}$ be the corresponding diagonal sequence (i.e. the k-th number in Λ is the k-th number in Λ_{k}). By continuity of $\|\cdot\|_{Y}$, we can estimate

$$
\left\|y_{k}-y_{m}\right\|_{Y}=\lim _{\Lambda \ni n \rightarrow \infty}\left\|T_{k} x_{n}-T_{m} x_{n}\right\|_{Y} \leq\left\|T_{k}-T_{m}\right\|_{L(X, Y)} \sup _{n \in \Lambda}\left\|x_{n}\right\|_{X}
$$

for any $k, m \in \mathbb{N}$. Since $\left(T_{k}\right)_{k \in \mathbb{N}}$ is convergent in $L(X, Y)$, we conclude that $\left(y_{k}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in Y. Since $\left(Y,\|\cdot\|_{Y}\right)$ is assumed to be complete, $y_{k} \rightarrow y$ for some $y \in Y$
as $k \rightarrow \infty$. We claim that $\left(T x_{n}\right)_{n \in \Lambda}$ also converges to y which would finish the proof of $T \in K(X, Y)$ by (i). Let $\varepsilon>0$ and choose a fixed $\kappa \in \mathbb{N}$ such that

$$
\left\|T-T_{\kappa}\right\|_{L(X, Y)}<\frac{\varepsilon}{3 \sup _{n \in \Lambda}\left\|x_{n}\right\|_{X}}, \quad \quad\left\|y_{\kappa}-y\right\|_{Y} \leq \frac{\varepsilon}{3}
$$

Since $T_{\kappa} x_{n} \rightarrow y_{\kappa}$ as $\Lambda \ni n \rightarrow \infty$, there exists $N \in \Lambda$ such that for every $\Lambda \ni n \geq N$ $\left\|T_{\kappa} x_{n}-y_{\kappa}\right\| \leq \frac{\varepsilon}{3}$. Finally, the claim follows from the estimate

$$
\begin{aligned}
\left\|T x_{n}-y\right\|_{Y} & \leq\left\|T x_{n}-T_{\kappa} x_{n}\right\|_{Y}+\left\|T_{\kappa} x_{n}-y_{\kappa}\right\|_{Y}+\left\|y_{\kappa}-y\right\|_{Y} \\
& \leq\left\|T-T_{\kappa}\right\|_{L(X, Y)} \sup _{n \in \Lambda}\left\|x_{n}\right\|_{X}+\left\|T_{\kappa} x_{n}-y_{\kappa}\right\|_{Y}+\left\|y_{\kappa}-y\right\|_{Y}<\varepsilon
\end{aligned}
$$

which holds for every $\Lambda \ni n \geq N$.
(iii) The image of $B_{1}(0)$ under $T \in L(X, Y)$ is bounded. If $T(X) \subset Y$ is of finite dimension, then $\overline{T\left(B_{1}(0)\right)}$ is compact as a bounded, closed subset of $T(X)$.
(iv) Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in X.

Suppose T is a compact operator. Then, a subsequence $\left(T x_{n_{k}}\right)_{k \in \mathbb{N}}$ is convergent in Y by (i). Since S is continuous, $\left(S T x_{n_{k}}\right)_{k \in \mathbb{N}}$ is convergent in Z, which by (i) proves that $S \circ T$ is a compact operator.

Suppose S is a compact operator. Since T is continuous, the sequence $\left(T x_{n}\right)_{n \in \mathbb{N}}$ is bounded in Y. Then, a subsequence $\left(S T x_{n_{k}}\right)_{k \in \mathbb{N}}$ is convergent in Z by (i), which again proves that $S \circ T$ is a compact operator.
(v) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be any bounded sequence in X. Since X is reflexive, a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ converges weakly in X by the Eberlein-Šmulian theorem. Then, $\left(T x_{n_{k}}\right)_{k \in \mathbb{N}}$ is norm-convergent in Y by assumption and (i) implies that T is a compact operator.

Solution of 11.5:

(i) Let $f \in L^{2}(\Omega)$. Then Hölder's inequality and Fubini's theorem imply

$$
\begin{aligned}
\int_{\Omega}|(K f)(x)|^{2} \mathrm{~d} x & =\int_{\Omega}\left|\int_{\Omega} k(x, y) f(y) \mathrm{d} y\right|^{2} \mathrm{~d} x \leq \int_{\Omega}\left(\int_{\Omega}|k(x, y) f(y)| \mathrm{d} y\right)^{2} \mathrm{~d} x \\
& \leq \int_{\Omega}\left(\int_{\Omega}|k(x, y)|^{2} \mathrm{~d} y\right)\|f\|_{L^{2}(\Omega)}^{2} \mathrm{~d} x=\|k\|_{L^{2}(\Omega \times \Omega)}^{2}\|f\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

Since $k \in L^{2}(\Omega \times \Omega)$ by assumption, $\|K f\|_{L^{2}(\Omega)} \leq\|k\|_{L^{2}(\Omega \times \Omega)}\|f\|_{L^{2}(\Omega)}<\infty$ follows.
(ii) Since the space $L^{2}(\Omega)$ is reflexive (which follows from being a Hilbert space), Problem 11.4 (v) implies that $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is a compact operator, if K maps weakly convergent sequences to norm-convergent sequences.
Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be sequence in $L^{2}(\Omega)$ such that $f_{n} \xrightarrow{\mathrm{w}} f$ as $n \rightarrow \infty$ for some $f \in L^{2}(\Omega)$. Since $k \in L^{2}(\Omega \times \Omega)$, Fubini's theorem implies that $k(x, \cdot) \in L^{2}(\Omega)$ for almost every $x \in \Omega$. Weak convergence therefore implies

$$
\left(K f_{n}\right)(x)=\left\langle k(x, \cdot), f_{n}\right\rangle_{L^{2}(\Omega)} \xrightarrow{n \rightarrow \infty}\langle k(x, \cdot), f\rangle_{L^{2}(\Omega)}=(K f)(x)
$$

for almost every $x \in \Omega$. As weakly convergent sequence, $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded: there exists $C \in \mathbb{R}$ such that $\left\|f_{n}\right\|_{L^{2}(\Omega)} \leq C$ for every $n \in \mathbb{N}$. By Hölder's inequality,

$$
\left|\left(K f_{n}\right)(x)\right| \leq \int_{\Omega}\left|k(x, y) f_{n}(y)\right| \mathrm{d} y \leq\|k(x, \cdot)\|_{L^{2}(\Omega)}\left\|f_{n}\right\|_{L^{2}(\Omega)} \leq C\|k(x, \cdot)\|_{L^{2}(\Omega)}
$$

The assumption $k \in L^{2}(\Omega \times \Omega)$ and Fubini's theorem imply that the function $x \mapsto$ $C\|k(x, \cdot)\|_{L^{2}(\Omega)}$ is in $L^{2}(\Omega)$. Thus, $\left(K f_{n}\right)(x)$ is dominated by a function in $L^{2}(\Omega)$. Since $\left(K f_{n}\right)(x)$ converges pointwise for almost every $x \in \Omega$ to a function in $L^{2}(\Omega)$, the dominated convergence theorem implies L^{2}-convergence $\left\|K f_{n}-K f\right\|_{L^{2}(\Omega)} \rightarrow 0$.

Solution of 11.6:

(i) For the sake of a contradiction, assume the claimed inequality is false: thus for any $k \geq 1$ one can find $x_{k} \in X$ with $\left\|x_{k}\right\|_{X}=1$ and $\left\|P x_{k}\right\|_{Y} \leq \frac{1}{k}$. By compactness of the map $J: X \rightarrow Z$ one can find $\Lambda \subset \mathbb{N}$ such that

$$
J x_{k} \rightarrow z_{\infty} \quad \text { in }\left(Z,\|\cdot\|_{Z}\right) \quad(k \rightarrow \infty, k \in \Lambda) .
$$

At this stage, using $(*)$ with $x_{l}-x_{m}$ in lieu of x, namely

$$
\left\|x_{l}-x_{m}\right\|_{X} \leq C\left(\left\|P\left(x_{l}-x_{m}\right)\right\|_{Y}+\left\|J\left(x_{l}-x_{m}\right)\right\|_{Z}\right)
$$

one gets that the sequence $\left(x_{k}\right)_{k \in \Lambda}$ is Cauchy in $\left(X,\|\cdot\|_{X}\right)$ so by completeness $x_{k} \rightarrow x_{\infty}$ in $\left(X,\|\cdot\|_{X}\right) \quad(k \rightarrow \infty, k \in \Lambda)$. Since $P \in L(X, Y)$ we have

$$
x_{k} \rightarrow x_{\infty} \quad \Longrightarrow P x_{k} \rightarrow P x_{\infty} \quad(k \rightarrow \infty, k \in \Lambda)
$$

but one the other hand $P x_{k} \rightarrow 0$ by construction, so we conclude $P x_{\infty}=0$ and hence, by injectivity $x_{\infty}=0$. However it should be $\left\|x_{\infty}\right\|_{X}=1$ by the fact that $\left\|x_{k}\right\|_{X}=1$ for any $k \geq 1$, contradiction.
(ii) Let us prove that $\operatorname{ker}(P)$ has finite dimension by showing that $B_{1}(0 ; \operatorname{ker}(P))$ is relatively compact in $\left(X,\|\cdot\|_{X}\right)$. To this scope, pick $\left(x_{k}\right)_{k \in \mathbb{N}} \subset \operatorname{ker}(P)$ a sequence with $\left\|x_{k}\right\|_{X}<1$ and let us prove it has a converging subsequence. Observe that inequality (*), when restricted to $x \in \operatorname{ker}(P)$ takes the form

$$
\|x\|_{X} \leq C\|J x\|_{Z}
$$

Hence (arguing as above) one first gets $J x_{k} \rightarrow z_{\infty}(k \rightarrow \infty, k \in \Lambda)$, by compactness of J, and then, by the inequality above, $\left(x_{k}\right)_{k \in \Lambda}$ is Cauchy in $\left(X,\|\cdot\|_{X}\right)$ hence convergent to x_{∞}.

At this stage, the fact that $\operatorname{ker}(P)$ is topologically complemented in X follows by Problem 7.2, so let us write $X=\operatorname{ker}(P) \oplus W$ with $W \subset X$ closed (i.e. $\bar{W}=W$) by Problem 3.4.

Lastly, the restricted operator $P^{\rho}: W \rightarrow Y$ is linear, bounded and one can invoke the result of part (i). With W in lieu of X and P^{ρ} in lieu of P to conclude that $\|x\|_{X} \leq C^{\prime \prime}\|P x\|_{Z}$ uniformly for $x \in W \subset X$, which completes the proof.

