12.1. Uniform subconvergence \mathfrak{C} . Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in $C^1([0,1])$ satisfying the following two properties.

$$\forall n \in \mathbb{N} : \quad f_n(0) = f'_n(0),$$
$$\exists C > 0 \quad \forall x \in [0, 1] \quad \forall n \in \mathbb{N} : \quad |f'_n(x)| \le C.$$

Show that $(f_n)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.

12.2. Sequence with bounded Hölder norm \square . Let $0 < \alpha \leq 1$ and let $\Omega \subseteq \mathbb{R}^n$ be an open, bounded subset. For continuous functions $\varphi \colon \Omega \to \mathbb{R}$, consider the so-called *Hölder norm*

$$\|\varphi\|_{C^{0,\alpha}(\Omega)} = \|\varphi\|_{L^{\infty}(\Omega)} + \sup_{\substack{x,y\in\Omega,\\x\neq y}} \frac{|\varphi(x) - \varphi(y)|}{|x - y|^{\alpha}},$$

and the corresponding normed space

$$C^{0,\alpha}(\overline{\Omega},\mathbb{R}) = \left\{ \varphi \in C^0(\overline{\Omega},\mathbb{R}) \mid \|\varphi\|_{C^{0,\alpha}(\Omega)} < \infty \right\}.$$

(i) Prove that a sequence $(\varphi_n)_{n \in \mathbb{N}} \subset C^{0,\alpha}(\overline{\Omega}, \mathbb{R})$ which is bounded with respect to the Hölder norm has a uniformly convergent subsequence.

Now let $X = L^2((0,1), \mathbb{R})$ and let $T: X \to X$ be given by $T(f)(x) = \int_0^x f(y) \, \mathrm{d}y$.

- (ii) Prove that $T(X) \subset C^{0,1/2}([0,1],\mathbb{R})$.
- (iii) Use (i) to prove that T is a compact operator from X to $Y = C^0([0,1],\mathbb{R})$.

12.3. Multiplication operators on complex-valued sequences $\mathfrak{C}^{\mathbb{P}}$. Let $\ell^p_{\mathbb{C}}$ denote the space of \mathbb{C} -valued sequences of summable *p*-th power, namely

$$\ell^p_{\mathbb{C}} := \left\{ x \colon \mathbb{N} \to \mathbb{C} \\ n \mapsto x_n \mid \sum_{n \in \mathbb{N}} |x_n|^p < \infty \right\}$$

endowed with its standard Banach norm $\|\cdot\|_{\ell^p_{\mathbb{C}}}$. Given $a \in \ell^\infty_{\mathbb{C}}$ we define the operator $T: \ell^2_{\mathbb{C}} \to \ell^2_{\mathbb{C}}$ by $(Tx)_n = a_n x_n$.

- (i) Prove that $T \in L(\ell^2_{\mathbb{C}}, \ell^2_{\mathbb{C}})$ and compute its operator norm.
- (ii) Prove that T is self-adjoint if and only if $a_n \in \mathbb{R}$ for all $n \in \mathbb{N}$.
- (iii) Prove that T is compact if and only if $\lim_{n \to \infty} a_n = 0$.

12.4. A compact operator on continuous functions \blacksquare . Given a < b, let $T: C^0([a, b]) \rightarrow C^0([a, b])$ be the linear operator defined by

$$(Tf)(x) = \int_{a}^{x} \frac{f(t)}{\sqrt{x-t}} \,\mathrm{d}t.$$

- (i) Check that T is continuous and compute its operator norm ||T||.
- (ii) Prove that T is a compact operator.
- (iii) Check that the spectral radius r_T of T can be estimated by $r_T \leq 2\sqrt{b-a}$.

12.5. A multiplication operator on square-integrable functions \blacksquare . Given $-\infty < a \le 0 \le b < \infty$, let $T: L^2([a, b]; \mathbb{C}) \to L^2([a, b]; \mathbb{C})$ be the linear operator defined by

$$(Tf)(x) = x^2 f(x).$$

- (i) Check that T is continuous and compute its operator norm ||T||.
- (ii) Prove that T has no eigenvalues.
- (iii) Show that T has spectrum $\sigma(T) = [0, ||T||]$.

12. Solutions

Solution of 12.1: For every $n \in \mathbb{N}$ and $x \in [0, 1]$, the assumptions $f'_n(0) = f_n(0)$ and $|f'_n(t)| \leq C$ for all $t \in [0, 1]$ imply

$$|f_n(x)| \le |f_n(0)| + \int_0^x |f'_n(t)| \, \mathrm{d}t = |f'_n(0)| + \int_0^x |f'_n(t)| \, \mathrm{d}t \le C + x \, C \le 2C.$$

Consequently, $(f_n)_{n \in \mathbb{N}}$ is uniformly bounded in $C^0([0,1])$. Moreover, it is equicontinuous, since

$$|f_n(x) - f_n(y)| = \left| \int_y^x f'_n(t) \,\mathrm{d}t \right| \le C|x - y|,$$

hence $|f_n(x) - f_n(y)| < \varepsilon$ whenever $|x - y| < \delta := \frac{\varepsilon}{2C}$. By the Arzelà–Ascoli theorem, $(f_n)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence.

Solution of 12.2:

(i) If $(\varphi_n)_{n\in\mathbb{N}}$ is uniformly bounded in the Hölder norm, then it is uniformly bounded in the sup-norm, since Ω is bounded. Moreover there exists some C > 0 so that for every $x, y \in \Omega$ and every $n \in \mathbb{N}$ there holds

$$|\varphi_n(x) - \varphi_n(x)| \le C|x - y|^{\alpha},$$

which implies that the sequence is uniformly continuous. The conclusion then follows by Arzelà-Ascoli's theorem.

(ii) For every $f \in X$, and every $x, y \in (0, 1)$ (w.l.o.g. $x \leq y$), by Hölder's inequality we have that

$$|F(f)(x) - F(f)(y)| \le \int_x^y |f(u)| \, \mathrm{d}u \le ||f||_{L^2((0,1))} |x - y|^{1/2},$$

and this yields at once that $F(f) \in C^{0,1/2}((0,1),\mathbb{R})$.

(iii) To prove that F is compact, it suffices to show that, if $(f_n)_{n \in \mathbb{N}}$ is a weakly convergent sequence in X, then $(F(f_n))_{n \in \mathbb{N}}$ converges strongly in $C^0((0, 1), \mathbb{R})$. Similarly as above, for every $n \in \mathbb{N}$ we have

$$|F(f_n)(x) - F(f_n)(y)| \le C ||f_n||_{L^2((0,1))} |x - y|^{1/2},$$

and, since a weakly converging sequence is bounded in norm, it follows that the Hölder 1/2-norm of $(F(f_n))_{n\in\mathbb{N}}$ is uniformly bounded. As a result, thanks to (i), $(F(f_n))_{n\in\mathbb{N}}$ converges strongly in $C^0((0,1),\mathbb{R})$.

Solution of 12.3:

(i) From

$$||Tx||_{\ell_{\mathbb{C}}^{2}}^{2} = \sum_{n \in \mathbb{N}} |a_{n}x_{n}|^{2} \le ||a||_{\ell_{\mathbb{C}}^{\infty}}^{2} ||x||_{\ell_{\mathbb{C}}^{2}}^{2},$$

we obtain $||T|| \leq ||a||_{\ell^{\infty}_{\mathbb{C}}}$. Given any $k \in \mathbb{N}$, let $e_k = (0, \ldots, 0, 1, 0, \ldots) \in \ell^2_{\mathbb{C}}$, where the 1 is at k-th position. Then, $||Te_k||_{\ell^2_{\mathbb{C}}} = |a_k| = |a_k|||e_k||_{\ell^2_{\mathbb{C}}}$ implies $||T|| \geq |a_k|$. Since $k \in \mathbb{N}$ is arbitrary, $||T|| \geq ||a||_{\ell^{\infty}_{\mathbb{C}}}$ follows. To conclude, $||T|| = ||a||_{\ell^{\infty}_{\mathbb{C}}}$.

(ii) The adjoint operator T^* of T is given by $(T^*y)_n = \overline{a_n}y_n$ for $y \in \ell^2_{\mathbb{C}}$ because

$$\forall x, y \in \ell^2_{\mathbb{C}} \qquad (x, T^*y)_{\ell^2_{\mathbb{C}}} = (Tx, y)_{\ell^2_{\mathbb{C}}} = \sum_{n \in \mathbb{N}} a_n x_n \overline{y_n} = \sum_{n \in \mathbb{N}} x_n \overline{\overline{a_n y_n}}.$$

and we conclude $T = T^* \Leftrightarrow a_n = \overline{a_n} \quad \forall n \in \mathbb{N}.$

(iii) Let $e_k \in \ell_{\mathbb{C}}^2$ be as in (i). Being an orthonormal system of the Hilbert space $\ell_{\mathbb{C}}^2$, the sequence $(e_n)_{n\in\mathbb{N}}$ converges weakly to zero. If T is a compact operator, then $|a_n| = ||Te_n||_{\ell_{\mathbb{C}}^2} \to 0$ as $n \to \infty$.

Conversely, let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{C} such that $a_n \to 0$ as $n \to \infty$ and let $T \in L(\ell^2_{\mathbb{C}}, \ell^2_{\mathbb{C}})$ be the corresponding multiplication operator. Let $(x^{(k)})_{k\in\mathbb{N}}$ be any bounded sequence in $\ell^2_{\mathbb{C}}$ and C > 0 a constant such that $\|x^{(k)}\|_{\ell^2_{\mathbb{C}}} \leq C$ for every $k \in \mathbb{N}$. Since $\ell^2_{\mathbb{C}}$ is reflexive, there exists $x \in \ell^2_{\mathbb{C}}$ and an unbounded subset $\Lambda \subset \mathbb{N}$ such that $x^{(k)} \xrightarrow{w}{\to} x$ as $\Lambda \ni k \to \infty$. In particular,

$$\lim_{\Lambda \ni k \to \infty} x_n^{(k)} = \lim_{\Lambda \ni k \to \infty} (e_n, x^{(k)})_{\ell_{\mathbb{C}}^2} = (e_n, x)_{\ell_{\mathbb{C}}^2} = x_n.$$
(*)

Moreover, since $B_C(0; \ell_{\mathbb{C}}^2)$ is weakly closed, $||x||_{\ell_{\mathbb{C}}^2} \leq C$. Let $\varepsilon > 0$. By assumption, there exists $N \in \mathbb{N}$ such that $|a_n|^2 < \frac{\varepsilon}{4C}$ for all $n \geq N$. Assuming $a \neq 0$, let $K \in \Lambda$ such that for all $\Lambda \ni k \geq K$ and each of the finitely many $n \in \{1, \ldots, N\}$ there holds

$$|x_n^{(k)} - x_n|^2 < \frac{\varepsilon}{2N \|a\|_{\ell_{\mathbb{C}}^\infty}^2}$$

This is possible due to (*). Then, for all $\Lambda \ni k \ge K$

$$\begin{aligned} \left\| Tx^{(k)} - Tx \right\|_{\ell_{\mathbb{C}}^{2}}^{2} &= \sum_{n=1}^{N} |a_{n}(x_{n}^{(k)} - x_{n})|^{2} + \sum_{n=N+1}^{\infty} |a_{n}(x_{n}^{(k)} - x_{n})|^{2} \\ &< \sum_{n=1}^{N} \frac{|a_{n}|^{2}\varepsilon}{2N \|a\|_{\ell_{\mathbb{C}}^{\infty}}^{2}} + \frac{\varepsilon}{4C} \sum_{n \in \mathbb{N}} \left(|x_{n}^{(k)}|^{2} + |x_{n}|^{2} \right) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

Thus, $(Tx^{(k)})_{k\in\Lambda}$ converges in $\ell^2_{\mathbb{C}}$, which proves that T is a compact operator.

Solution of 12.4:

(i) For every $x \in [a, b]$ and any $f \in C^0([a, b])$ there holds

$$\int_{a}^{x} \frac{1}{\sqrt{x-t}} dt = \left[-2\sqrt{x-t}\right]_{t=a}^{x} = 2\sqrt{x-a},$$

$$\implies |(Tf)(x)| \le \int_{a}^{x} \frac{|f(t)|}{\sqrt{x-t}} dt \le 2\sqrt{x-a} ||f||_{C^{0}([a,b])}.$$

Therefore, $||Tf||_{C^0([a,b])} \leq 2\sqrt{b-a}||f||_{C^0([a,b])}$ and $||T|| \leq 2\sqrt{b-a}$. In fact, choosing a constant function f, we obtain $||T|| = 2\sqrt{b-a}$.

(ii) Let $(f_n)_{n \in \mathbb{N}}$ be a bounded sequence in $C^0([a, b])$ and let C > 0 be a constant such that $||f_n||_{C^0([a,b])} \leq C$ for all $n \in \mathbb{N}$. Then the sequence $(Tf_n)_{n \in \mathbb{N}}$ is also (uniformly) bounded in $C^0([a, b])$ since

$$||Tf_n||_{C^0([a,b])} \le ||T|| ||f_n||_{C^0([a,b])} \le 2C\sqrt{b-a}$$

by part (i). To show equicontinuity, we consider $a \le x \le y \le b$ and estimate

$$\begin{aligned} |(Tf_n)(y) - (Tf_n)(x)| &= \left| \int_a^y \frac{f_n(t)}{\sqrt{y-t}} \, \mathrm{d}t - \int_a^x \frac{f_n(t)}{\sqrt{x-t}} \, \mathrm{d}t \right| \\ &= \left| \int_x^y \frac{f_n(t)}{\sqrt{y-t}} \, \mathrm{d}t - \int_a^x \left(\frac{f_n(t)}{\sqrt{x-t}} - \frac{f_n(t)}{\sqrt{y-t}} \right) \, \mathrm{d}t \right| \\ &\leq \int_x^y \frac{|f_n(t)|}{\sqrt{y-t}} \, \mathrm{d}t + \int_a^x |f_n(t)| \left(\frac{1}{\sqrt{x-t}} - \frac{1}{\sqrt{y-t}} \right) \, \mathrm{d}t \\ &\leq C \left(\int_x^y \frac{1}{\sqrt{y-t}} \, \mathrm{d}t + \int_a^x \left(\frac{1}{\sqrt{x-t}} - \frac{1}{\sqrt{y-t}} \right) \, \mathrm{d}t \right) \\ &\leq 2C \left(\sqrt{y-x} + \sqrt{x-a} - \sqrt{y-a} + \sqrt{y-x} \right) \\ &\leq 4C\sqrt{y-x}. \end{aligned}$$

Hence, $|(Tf_n)(y) - (Tf_n)(x)| < \varepsilon$ whenever $|y - x| < \delta := \frac{\varepsilon^2}{16C^2}$. By the Arzelà–Ascoli theorem, $(Tf_n)_{n \in \mathbb{N}}$ has a uniformly convergent subsequence, which proves that T is a compact operator.

(iii) In part (i) we computed the operator norm $||T|| = 2\sqrt{b-a}$. By definition,

$$r_T := \inf_{n \in \mathbb{N}} ||T^n||^{\frac{1}{n}} \le ||T|| = 2\sqrt{b-a}.$$

Solution of 12.5:

(i) For every $f \in L^2([a, b]; \mathbb{C})$, there holds

$$||Tf||^{2}_{L^{2}([a,b];\mathbb{C})} = \int_{a}^{b} x^{4} |f(x)|^{2} dx \le \left(\max_{x \in [a,b]} x^{4}\right) ||f||^{2}_{L^{2}([a,b];\mathbb{C})}$$
$$\implies ||T|| \le \max\{a^{2}, b^{2}\}.$$

Suppose b > 0. Let $0 < \varepsilon < b$ and let $f_{\varepsilon} = \varepsilon^{-\frac{1}{2}} \chi_{[b-\varepsilon,b]}$, where $\chi_{[b-\varepsilon,b]}$ denotes the characteristic function of the interval $[b - \varepsilon, b] \subset [a, b]$. Then,

$$||Tf_{\varepsilon}||^2_{L^2([a,b];\mathbb{C})} = \int_{b-\varepsilon}^b x^4 |f_{\varepsilon}(x)|^2 \,\mathrm{d}x \ge (b-\varepsilon)^4 ||f_{\varepsilon}||^2_{L^2([a,b];\mathbb{C})}.$$

Since $\varepsilon > 0$ is arbitrary, we obtain $||T|| \ge b^2$. Analogously, we can prove $||T|| \ge a^2$ under the assumption a < 0. As a result, we obtain $||T|| = \max\{a^2, b^2\}$.

(ii) Suppose $\lambda \in \mathbb{C}$ and $f \in L^2([a, b]; \mathbb{C})$ satisfy $Tf = \lambda f$. For almost every $x \in [a, b]$,

$$0 = (\lambda f - Tf)(x) = (\lambda - x^2)f(x).$$

From $\lambda - x^2 \neq 0$ for almost all $x \in [a, b]$ we conclude f(x) = 0 for almost all $x \in [a, b]$. Hence, f = 0 in $L^2([a, b]; \mathbb{C})$ which proves that the operator T has no eigenvalues.

(iii) In part (ii) we proved that the operator $(\lambda - T)$ is injective for any $\lambda \in \mathbb{C}$. If the operator $(\lambda - T)$ is surjective for some $\lambda \in \mathbb{C}$, then there exists $f \in L^2([a, b]; \mathbb{C})$ with $\lambda f - Tf = 1$. Then, for almost every $x \in [a, b]$,

$$1 = \lambda f(x) - Tf(x) = (\lambda - x^2)f(x) \qquad \implies f(x) = \frac{1}{\lambda - x^2}$$

If $0 \leq \lambda \in \mathbb{R}$ and if $a \leq -\sqrt{\lambda}$ or $\sqrt{\lambda} \leq b$, then $f \notin L^2([a, b])$ in contradiction to our assumption because of the singularity at $x \in [a, b]$ satisfying $x^2 = \lambda$. Therefore, $(\lambda - T)$ is not surjective for $\lambda \in [0, \max\{a^2, b^2\}]$ which shows $[0, ||T||] \subset \sigma(T)$.

If $\lambda \in \mathbb{C} \setminus [0, ||T||]$, then the function $f: [a, b] \to \mathbb{C}$ with $f(x) = \frac{1}{\lambda - x^2}$ is bounded. Therefore, the map $R_{\lambda}: L^2([a, b]; \mathbb{C}) \to L^2([a, b]; \mathbb{C})$ given by $g \mapsto gf$ is continuous. Moreover, by construction $(\lambda - T)(gf) = g$ for any $g \in L^2([a, b]; \mathbb{C})$, which proves $(\lambda - T)^{-1} = R_{\lambda}$. To conclude, $\sigma(T) = [0, ||T||]$.