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13.1. Definitions of resolvent set L. Let (X, ‖·‖X) be a Banach space over C and
let A : DA ⊂ X → X be a linear operator. Prove that if A has closed graph, then the
following sets coincide.

ρ(A) = {λ ∈ C | (λ− A) : DA → X is bijective, ∃(λ− A)−1 ∈ L(X,X)},

ρ̃(A) = {λ ∈ C | (λ− A) : DA → X is injective with dense image,
∃(λ− A)−1 ∈ L(Z(λ), X)},

where we have set Z(λ) := (λ−A)(DA), i.e., the image of λ−A, and (λ−A)−1 ∈ L(Z(λ), X)
means that the (necessarily linear) set-theoretic inverse of λ− A is bounded, in the usual
sense that supz∈Zλ,‖z‖X≤1‖(λ− A)−1(z)‖ <∞.

Remark. In the literature, the resolvent set is often defined to be ρ̃(A) rather than ρ(A).
Since as soon as ρ(A) is not empty A has closed graph, this problem shows that the two
perspectives are in fact equivalent.

13.2. Unitary operators L.

Definition. Let (H, 〈·, ·〉H) be a Hilbert space over C. An invertible linear operator
T ∈ L(H,H) is called unitary, if T ∗ = T−1.

(i) Prove that T ∈ L(H,H) is unitary if and only if T is a bijective isometry.

(ii) Prove that if T ∈ L(H,H) is unitary, then its spectrum lies on the unit circle:

σ(T ) ⊂ S1 := {λ ∈ C | |λ| = 1}.

13.3. Integral operators revisited L. Let Ω ⊂ Rm be a bounded subset. Given
k ∈ L2(Ω× Ω) such that k(x, y) = k(y, x) for almost every (x, y) ∈ Ω× Ω, consider the
operator K : L2(Ω)→ L2(Ω) defined by

(Kf)(x) =
∫

Ω
k(x, y)f(y) dy

and the operator
A : L2(Ω)→ L2(Ω)

f 7→ f −Kf.

Prove that injectivity of A and surjectivity of A are equivalent.

13.4. Resolvents and spectral distance 3uu. Let (H, 〈·, ·〉H) be a Hilbert space
over C.

(i) Let A ∈ L(H,H) be a self-adjoint operator and let λ ∈ ρ(A) be an element in its
resolvent set. Show that the resolvent Rλ := (λ− A)−1 is a normal operator, i.e.,

RλR
∗
λ = R∗λRλ.
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(ii) Let A,B ∈ L(H,H) be self-adjoint operators. The Hausdorff distance of their
spectra σ(A), σ(B) ⊂ C is defined to be

d
(
σ(A), σ(B)

)
:= max

{
sup

α∈σ(A)

(
inf

β∈σ(B)
|α− β|

)
, sup
β∈σ(B)

(
inf

α∈σ(A)
|α− β|

)}
.

Prove the estimate

d
(
σ(A), σ(B)

)
≤ ‖A−B‖L(H,H).

Remark. The Hausdorff distance d is in fact a distance on compact subsets of C. In
particular, it restricts to an actual distance function on the spectra of bounded linear
operators.

13.5. Compact operator on space decomposition £. Let H be a Hilbert space
over R and let A : H → H be linear, compact and self-adjoint.

(i) State the spectral theorem for A.

Now, suppose the existence of two complementary and mutually orthogonal subspaces
H ′, H ′′ ⊂ H that are A-invariant, meaning that

H = H ′ ⊕⊥ H ′′, A(H ′) ⊂ H ′, A(H ′′) ⊂ H ′′.

(ii) Show that each of the restricted operators A′ := A|H′ and A′′ := A|H′′ is also compact
and self-adjoint.

Assume now that A is nonnegative definite (i.e., (Ax, x) ≥ 0 for all x ∈ H).

(iii) State the Courant–Fischer characterization of the eigenvalues of A.

(iv) Denoted by λ1, λ
′
1, λ
′′
1 the first (namely, the largest) eigenvalue of A,A′, A′′ respec-

tively, show that

λ1 = max{λ′1, λ′′1}.

13.6. Heisenberg’s uncertainty principle 3uu. Let (H, 〈·, ·〉H) be a Hilbert
space over C. Let DA, DB ⊂ H be dense subspaces and let A : DA ⊂ H → H and
B : DB ⊂ H → H be symmetric linear operators. Under the necessary assumption that
A(DA ∩DB) ⊂ DB and B(DA ∩DB) ⊂ DA, the commutator

[A,B] : D[A,B] ⊂ H → H

x 7→ A(Bx)−B(Ax)

is a well-defined operator on D[A,B] := DA ∩DB.

(i) Prove the following inequality:

∀x ∈ D[A,B] : 2‖Ax‖H‖Bx‖H ≥
∣∣∣〈x, [A,B]x〉H

∣∣∣.
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(ii) Given the symmetric operator A : DA ⊂ H → H we define the standard deviation

ς(A, x) :=
√
〈Ax,Ax〉H − 〈x,Ax〉2H

at each x ∈ DA with ‖x‖H = 1. Verify ς(A, x) ∈ R and prove the following
inequality:

∀x ∈ D[A,B], ‖x‖H = 1 : 2ς(A, x) ς(B, x) ≥
∣∣∣〈x, [A,B]x〉H

∣∣∣.
Remark. The possible states of a quantum mechanical system are given by elements
x ∈ H with ‖x‖H = 1. Each observable is given by a symmetric linear operator
A : DA ⊂ H → H. If the system is in state x ∈ DA, we measure the observable A
with uncertainty ς(A, x).

(iii) Let A : DA → H and B : DB → H be as above. The pair of operators (A,B) is
called Heisenberg pair if

[A,B] = i idD[A,B] .

Under the assumption that B has finite operator norm and DB = H, prove that
if (A,B) is a Heisenberg pair, then A : DA ⊂ H → H cannot have finite operator
norm.

(iv) Consider the Hilbert space (H, 〈·, ·〉H) =
(
L2([0, 1];C), 〈·, ·〉L2

)
and the subspace

C1
0([0, 1];C) := {f ∈ L2([0, 1];C) | f ∈ C1([0, 1];C), f(0) = 0 = f(1)}.

Here, we denote elements in the Hilbert space L2([0, 1];C) by f and points in the
interval [0, 1] by s. We understand f ∈ C1([0, 1];C) if f has a representative in C1

and write f ′ = d
dsf in this case. Recall that in this sense, C1

0 ([0, 1];C) ⊂ L2([0, 1];C)
is a dense subspace. The operators

P : C1
0([0, 1];C)→ L2([0, 1];C), Q : L2([0, 1];C)→ L2([0, 1];C)

f(s) 7→ if ′(s) f(s) 7→ sf(s)

correspond to the observables momentum and position. Check that P and Q are
well-defined, symmetric operators. Check that [P,Q] : C1

0 ([0, 1];C)→ L2([0, 1];C) is
well-defined.

Show that (P,Q) is a Heisenberg pair and conclude the uncertainty principle:

∀f ∈ C1
0([0, 1];C), ‖f‖L2([0,1];C) = 1 : ς(P, f) ς(Q, f) ≥ 1

2 .

The more precisely the momentum of some particle is known, the less precisely its
position can be known, and vice versa.
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13. Solutions

Solution of 13.1: Let λ ∈ ρ̃(A). To show λ ∈ ρ(A), we need to prove that (λ−A) : DA →
X is surjective. Let y ∈ X. Since (λ−A) has dense image, there exists a sequence (yn)n∈N in
the image Z(λ) of (λ−A) such that ‖yn−y‖X → 0 as n→∞. Let xn = (λ−A)−1yn ∈ DA.
Since (yn)n∈N is a Cauchy sequence in Y , and since

‖xm − xn‖X = ‖(λ− A)−1(ym − yn)‖X ≤ ‖(λ− A)−1‖L(Z(λ),X)‖ym − yn‖X ,

we conclude that (xn)n∈N is a Cauchy sequence in X. Since X is complete, there exists a
limit point X 3 x = limn→∞ xn. Moreover,

Axn = λxn − yn
n→∞−−−→ λx− y.

Since A has closed graph x ∈ DA with Ax = λx− y. This implies y = (λ− A)x. Thus,
(λ− A) is surjective and λ ∈ ρ(A) follows. The reverse inclusion ρ(A) ⊂ ρ̃(A) is trivial.

Solution of 13.2:

(i) Suppose, T ∈ L(H,H) is a unitary operator. Then, T is invertible with inverse
T−1 = T ∗ ∈ L(H,H). In particular, T is bijective. T is also an isometry, because

∀x ∈ H : ‖Tx‖2
H = 〈Tx, Tx〉H = 〈T ∗Tx, x〉H = 〈x, x〉H = ‖x‖2

H .

Conversely, suppose, T ∈ L(H,H) is a bijective isometry. Then, ‖Tx‖2
H = ‖x‖2

H for every
x ∈ H. From the (complex) polarization identity

〈x, y〉H = 1
4
(
‖x+ y‖2 − ‖x− y‖2

)
+ i

4
(
‖x+ iy‖2

H − ‖x− iy‖2
H

)
(which is motivated by the parallelogram identity), we conclude 〈Tx, Ty〉H = 〈x, y〉H for
every x, y ∈ H. In other words, isometries preserve the scalar product. Therefore,

〈T ∗Tx, y〉H = 〈Tx, Ty〉H = 〈x, y〉H

for every x, y ∈ H which implies T ∗Tx = x for every x ∈ H. Since T is bijective, we
obtain T ∗ = T−1 which means that T is unitary.

(ii) Let T ∈ L(H,H) be unitary. Part (i) implies that T and T ∗ = T−1 are bijective
isometries. Therefore, ‖T‖ = 1 = ‖T ∗‖. Since the spectral radius of T is bounded from
above by ‖T‖ = 1, we obtain {λ ∈ C | |λ| > 1} ⊂ ρ(T ) from Satz 6.5.3.i.

Given λ ∈ C with 0 ≤ |λ| < 1, the spectral radius of the operator λT ∗ is bounded from
above by ‖λT ∗‖ = |λ| < 1. Thus, (1 − λT ∗) is invertible on H by Satz 2.2.7. Hence,
(λ− T ) = −T ◦ (1− λT ∗) is bijective as composition of bijective operators and we obtain
λ ∈ ρ(T ). To conclude, σ(T ) ⊂ S1.
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Solution of 13.3: From k(x, y) = k(y, x) for almost every (x, y) ∈ Ω× Ω and with the
help of Fubini’s theorem, we conclude that the integral operator K : L2(Ω)→ L2(Ω) is
symmetric. Indeed we have

∀f, g ∈ L2(Ω) : 〈Kf, g〉L2(Ω) =
∫

Ω

(∫
Ω
k(x, y)f(y) dy

)
g(x) dx

=
∫

Ω
f(y)

(∫
Ω
k(y, x)g(x) dx

)
dy = 〈f,Kg〉L2(Ω).

In fact, K is self-adjoint, since moreover it holds DK = L2(Ω) = DK∗ . Therefore, the
operator A = (1−K) : L2(Ω)→ L2(Ω) is also self-adjoint (Beispiel 6.4.2.ii).

According to Problem 11.5 (ii), K is a compact operator, which implies that the operator
A = (1−K) has closed image im(A) ⊂ H. According to Banach’s closed range theorem,
this is equivalent to im(A) = ker(A∗)⊥. Since A∗ = A, we conclude

A surjective ⇐⇒ H = im(A) = ker(A)⊥ ⇐⇒ ker(A) = {0} ⇐⇒ A injective.

Solution of 13.4:

(i) Given the self-adjoint operator A ∈ L(H,H) and an element λ ∈ ρ(A), the operator
(λ− A) ∈ L(H,H) is bijective with inverse Rλ = (λ− A)−1 ∈ L(H,H). Problem 11.2 (i)
then implies that R∗λ is an isomorphism and according to Problem 11.1 (iii),

R∗λ =
(
(λ− A)−1

)∗
=
(
(λ− A)∗

)−1
= (λ− A∗)−1 = (λ− A)−1 = Rλ.

Alternatively, for any x, y ∈ H, we can directly compute

〈x, y〉H = 〈(λ− A)Rλx, y〉H = 〈λRλx, y〉H − 〈ARλx, y〉H
= 〈Rλx, λy〉H − 〈Rλx,Ay〉H = 〈Rλx, (λ− A)y〉H = 〈x,R∗λ(λ− A)y〉H

which implies R∗λ(λ−A)y = y for any y ∈ H. According to Satz 6.5.2, resolvents commute:
RλRλ = RλRλ. This implies that Rλ is a normal operator: RλR

∗
λ = R∗λRλ.

(ii) Let A,B ∈ L(H,H) be self-adjoint operators. By symmetry of the Hausdorff distance
(in the sense that we can switch the roles of A and B), it suffices to prove

sup
α∈σ(A)

(
inf

β∈σ(B)
|α− β|

)
≤ ‖A−B‖L(H,H).

The claim follows, if we show the following implication for any α ∈ C:

inf
β∈σ(B)

|α− β| > ‖A−B‖L(H,H) =⇒ α ∈ ρ(A) = C \ σ(A).

Let α ∈ C satisfy infβ∈σ(B)|α− β| > ‖A−B‖L(H,H). Since the claim is trivial otherwise,
we may assume ‖A − B‖L(H,H) > 0. Then, α has positive distance from σ(B) which
implies α ∈ ρ(B). Hence, (α−B)−1 is well-defined and we obtain

(α− A) = (α−B)− (A−B) =
(
1− (A−B)(α−B)−1

)
(α−B). (∗)
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Since (α−B) is bijective, it remains to prove that
(
1− (A−B)(α−B)−1

)
is bijective.

This follows from Satz 2.2.7 if we prove ‖(A−B)(α−B)−1‖L(H,H) < 1.

Consider the rational function fα : C→ C given by fα(z) = (α− z)−1. By assumption,

1
‖A−B‖

>
1

inf
β∈σ(B)

|α− β|
= sup

β∈σ(B)

1
|α− β|

= sup
{
|x|

∣∣∣ x ∈ fα(σ(B))
}
.

The spectral mapping theorem (Satz 6.5.4) implies fα(σ(B)) = σ(fα(B)). Thus,

1
‖A−B‖

> sup
{
|x|

∣∣∣ x ∈ σ(fα(B))
}

= sup
x∈σ(fα(B))

|x| = rfα(B), (†)

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since fα(B) =
(α−B)−1 =: R is a resolvent of B, it is a normal operator by (i). Hence,

‖Rx‖2
H = 〈Rx,Rx〉H = 〈R∗Rx, x〉H = 〈RR∗x, x〉H = 〈R∗x,R∗x〉H = ‖R∗x‖2

H ,

‖Rx‖2
H = 〈R∗Rx, x〉H ≤ ‖R∗Rx‖H‖x‖H ≤ ‖R∗R‖‖x‖2

H ,

=⇒ ‖R‖2 ≤ ‖R∗R‖ ≤ ‖R∗‖‖R‖ = ‖R‖2,

=⇒ ‖R‖2 = ‖R∗R‖ = sup
‖x‖H=1

‖R∗(Rx)‖H = sup
‖x‖H=1

‖R(Rx)‖H = ‖R2‖.

(Note how the last identity makes use of the first identity.) Inductively, we obtain
‖R‖2n = ‖R2n‖ for every n ∈ N which implies rfα(B) = rR = ‖R‖ = ‖(α − B)−1‖.
Combined with estimate (†), we obtain 1

‖A−B‖ > ‖(α−B)−1‖, which yields

‖(A−B)(α−B)−1‖ ≤ ‖A−B‖‖(α−B)−1‖ < 1

and proves the claim. From (∗) we then conclude α ∈ ρ(A).

Solution of 13.5:

(i) Let (H, 〈·, ·〉) be a Hilbert space and let A : H → H be linear, compact and self-adjoint
and A 6= 0. Then there exist at most countably many eigenvalues λk ∈ R \ {0} which can
accumulate only at 0 ∈ R and corresponding eigenvectors ek ∈ H such that

∀x ∈ H : Ax =
∑
k

λk〈x, ek〉ek.

(ii) As an orthogonal complement of H ′′ the subspace H ′ ⊂ H is closed and (H ′, 〈·, ·〉) is
Hilbertean. Let B1 ⊂ H be the unit ball in H and B′1 ⊂ H ′ the unit ball in H ′. Then,
A′B′1 = AB′1 is compact as closed subset of the compact set AB1. Therefore, A′ : H ′ → H ′

and analogously A′′ : H ′′ → H ′′ are compact operators.

Moreover, we have

∀x, y ∈ H ′ : 〈A′x, y〉 = 〈Ax, y〉 = 〈x,Ay〉 = 〈x,A′y〉

Hence, A′ : H ′ → H ′ is symmetric and hence self-adjoint being defined on all of H ′.
Self-adjointness of A′′ : H ′′ → H ′′ follows analogously.
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(iii) The Courant–Fischer characterization of the k-th eigenvalue λk of A is

λk = sup
M⊂H,

dimM=k

inf
x∈M,
‖x‖=1

〈x,Ax〉.

(iv) By the Courant–Fischer characterization

λ1 = sup
x∈H,
‖x‖=1

〈x,Ax〉 ≥ sup
x′∈H′,
‖x′‖=1

〈x′, Ax′〉 = sup
x′∈H′,
‖x′‖=1

〈x′, A′x′〉 = λ′1.

Analogously, λ1 ≥ λ′′1, hence we have λ1 ≥ max{λ′1, λ′′1}.

If e1 = e′1 + e′′1 ∈ H ′⊕H ′′ is an eigenvector of A relative to its first eigenvalue λ1 > 0, then

A′e′1+A′′e′′1 = Ae1 = λ1e
′
1 + λ1e

′′
1

=⇒

〈e′1, A′e′1〉 = λ1〈e′1, e′1〉
〈e′′1, A′′e′′1〉 = λ1〈e′′1, e′′1〉

If e′1 6= 0, then e′1/‖e′1‖ is an eigenvector with eingevalue λ1 and we obtain λ′1 ≥ λ1.
Analogously, if e′′1 6= 0, then e′′1/‖e′′1‖ is an eigenvector with eingevalue λ1 and we obtain
λ′′1 ≥ λ1. Since e1 6= 0, one of these two cases must be true, and we conclude λ1 =
max{λ1, λ2}.

Solution of 13.6: Let A : DA ⊂ H → H and B : DB ⊂ H → H be densely defined,
symmetric linear operators on the Hilbert space (H, 〈·, ·〉H) such that A(DA) ⊂ DB and
B(DB) ⊂ DA.

(i) Let x ∈ D[A,B] := DA ∩DB. Then, applying the Cauchy–Schwarz inequality,∣∣∣〈x, [A,B]x〉H
∣∣∣ ≤ ∣∣∣〈x,A(Bx)〉H

∣∣∣+ ∣∣∣〈x,B(Ax)〉H
∣∣∣ =

∣∣∣〈Ax,Bx〉H ∣∣∣+ ∣∣∣〈Bx,Ax〉H ∣∣∣
≤ 2‖Ax‖H‖Bx‖H .

(ii) Since A is a symmetric operator, 〈x,Ax〉H is real for any x ∈ DA ⊂ DA∗ . Indeed,

〈x,Ax〉H = 〈A∗x, x〉H = 〈Ax, x〉H = 〈x,Ax〉H .

Moreover, for x ∈ DA with ‖x‖H = 1, we have

〈x,Ax〉2H ≤ ‖x‖2
H‖Ax‖2

H = 〈Ax,Ax〉H

Therefore,

R 3 ς(A, x) :=
√
〈Ax,Ax〉H − 〈x,Ax〉2H .
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For any λ, µ ∈ R, the commutators [A,B] and [A− λ,B − µ] agree:

[A− λ,B − µ] = (A− λ)(B − µ)− (B − µ)(A− λ)
= AB − µA− λB + λµ−BA+ λB + µA− λµ = [A,B].

Since A is symmetric and λ ∈ R, the operator Ã = A− λ is also symmetric on DÃ = DA.
Moreover, for any x ∈ DA,

‖Ãx‖2
H = 〈Ãx, Ãx〉H = 〈Ax− λx,Ax− λx〉H

= 〈Ax,Ax〉H − λ〈x,Ax〉H − λ〈Ax, x〉H + λ2〈x, x〉H
= 〈Ax,Ax〉H − 2λ〈x,Ax〉H + λ2〈x, x〉H .

We observe that if we choose λ = 〈x,Ax〉H ∈ R and if ‖x‖H = 1, then

‖Ãx‖2
H = 〈Ax,Ax〉H − 〈x,Ax〉2H = ς(A, x)2.

Now, let x ∈ D[A,B] := DA ∩ DB with ‖x‖H = 1 be arbitrary. Since the operators
Ã := A− 〈x,Ax〉H and B̃ := B − 〈x,Bx〉H are symmetric, part (i) applies and yields∣∣∣〈x, [A,B]x〉H

∣∣∣ =
∣∣∣〈x, [Ã, B̃]x〉H

∣∣∣ ≤ 2‖Ãx‖H‖B̃x‖H = 2ς(A, x) ς(B, x).

(iii) Suppose, B : H → H with finite operator norm and A : DA ⊂ H → H satisfy

[A,B] = i idD[A,B] .

By assumption, D[A,B] = DA ∩H = DA and B(DA) ⊂ DA. In particular, for any n ∈ N
the inclusion Bn(DA) ⊂ DA is satisfied, which is necessary to define [A,Bn]. We prove
[A,Bn] = niBn−1 by induction. For n = 1, the claim holds by assumption. Suppose, it is
true for some n ∈ N. Then

[A,Bn+1] = ABn+1 −Bn+1A =
(
ABn −BnA+BnA

)
B −Bn+1A

=
(
[A,Bn] +BnA

)
B −Bn+1A = niBn−1B +BnAB −Bn+1A

= niBn +Bn[A,B] = niBn + iBn = (n+ 1)iBn.

A consequence is that B cannot be nilpotent: if Bn = 0 for some n ∈ N, then Bn−1 =
1
ni

[A,Bn] = 0 which iterates to B = 0 in contradiction to [A,B] 6= 0. Suppose, A has
finite operator norm ‖A‖. Then,

n‖Bn−1‖ = ‖[A,Bn]‖ ≤ ‖ABn‖+ ‖BnA‖ ≤ 2‖A‖‖Bn−1‖‖B‖.

Since ‖Bn−1‖ 6= 0, we obtain 2‖A‖ ≥ n
‖B‖ which contradicts n ∈ N being arbitrary.

(iv) If f ∈ C1([0, 1];C), then f ′ is bounded and in particular f ′ ∈ L2([0, 1];C). The map
[0, 1] 3 s 7→ s is also bounded. Therefore, the linear operators

P : C1
0([0, 1];C)→ L2([0, 1];C), Q : L2([0, 1];C)→ L2([0, 1];C)

f(s) 7→ if ′(s) f(s) 7→ sf(s)
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are indeed well-defined. They are also symmetric. For Q this follows trivially from
s ∈ [0, 1] ⊂ R. Given any f, g ∈ DP := C1

0([0, 1];C), we have

〈Pf, g〉L2 =
∫ 1

0
if ′(s)g(s) ds = −

∫ 1

0
if(s)g′(s) ds =

∫ 1

0
f(s)ig′(s) ds = 〈f, Pg〉L2 .

When integrating by parts, the boundary terms vanish due to f(0) = 0 = f(1). Hence,
P : C1

0([0, 1];C)→ L2([0, 1];C) is symmetric (but not self-adjoint! see Beispiel 6.6.1).

Next, we verify that the commutator [P,Q] is well-defined. Since DQ = L2([0, 1];C) is
the whole space, the only thing to check is that Qf : s 7→ sf(s) is in DP = C1

0([0, 1];C)
whenever f ∈ D[P,Q] = C1

0([0, 1];C). But this follows trivially from the product rule.
Moreover,

([P,Q]f)(s) = (P (Qf))(s)− (Q(Pf))(s) = if(s) + isf ′(s)− sif ′(s) = if(s)

for almost every s ∈ [0, 1] which proves that (P,Q) is a Heisenberg pair. Finally, by part
(ii), we have

∀f ∈ C1
0 , ‖f‖L2 = 1 : ς(P, f) ς(Q, f) ≥ 1

2

∣∣∣〈f, [P,Q]f〉L2

∣∣∣ = 1
2

∣∣∣〈f, if〉L2

∣∣∣ = 1
2 .
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