13.1. Definitions of resolvent set \mathbb{G}. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space over \mathbb{C} and let $A: D_{A} \subset X \rightarrow X$ be a linear operator. Prove that if A has closed graph, then the following sets coincide.

$$
\begin{array}{r}
\rho(A)=\left\{\lambda \in \mathbb{C} \mid(\lambda-A): D_{A} \rightarrow X \text { is bijective, } \exists(\lambda-A)^{-1} \in L(X, X)\right\}, \\
\tilde{\rho}(A)=\left\{\lambda \in \mathbb{C} \mid(\lambda-A): D_{A} \rightarrow X\right. \text { is injective with dense image, } \\
\left.\exists(\lambda-A)^{-1} \in L(Z(\lambda), X)\right\},
\end{array}
$$

where we have set $Z(\lambda):=(\lambda-A)\left(D_{A}\right)$, i.e., the image of $\lambda-A$, and $(\lambda-A)^{-1} \in L(Z(\lambda), X)$ means that the (necessarily linear) set-theoretic inverse of $\lambda-A$ is bounded, in the usual sense that $\sup _{z \in Z_{\lambda},\|z\|_{X} \leq 1}\left\|(\lambda-A)^{-1}(z)\right\|<\infty$.

Remark. In the literature, the resolvent set is often defined to be $\tilde{\rho}(A)$ rather than $\rho(A)$. Since as soon as $\rho(A)$ is not empty A has closed graph, this problem shows that the two perspectives are in fact equivalent.

13.2. Unitary operators

Definition. Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. An invertible linear operator $T \in L(H, H)$ is called unitary, if $T^{*}=T^{-1}$.
(i) Prove that $T \in L(H, H)$ is unitary if and only if T is a bijective isometry.
(ii) Prove that if $T \in L(H, H)$ is unitary, then its spectrum lies on the unit circle:

$$
\sigma(T) \subset \mathbb{S}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}
$$

13.3. Integral operators revisited . Let $\Omega \subset \mathbb{R}^{m}$ be a bounded subset. Given $k \in L^{2}(\Omega \times \Omega)$ such that $k(x, y)=k(y, x)$ for almost every $(x, y) \in \Omega \times \Omega$, consider the operator $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ defined by

$$
(K f)(x)=\int_{\Omega} k(x, y) f(y) \mathrm{d} y
$$

and the operator

$$
\begin{aligned}
A: L^{2}(\Omega) & \rightarrow L^{2}(\Omega) \\
f & \mapsto f-K f .
\end{aligned}
$$

Prove that injectivity of A and surjectivity of A are equivalent.
13.4. Resolvents and spectral distance θ. Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}.
(i) Let $A \in L(H, H)$ be a self-adjoint operator and let $\lambda \in \rho(A)$ be an element in its resolvent set. Show that the resolvent $R_{\lambda}:=(\lambda-A)^{-1}$ is a normal operator, i.e.,

$$
R_{\lambda} R_{\lambda}^{*}=R_{\lambda}^{*} R_{\lambda} .
$$

(ii) Let $A, B \in L(H, H)$ be self-adjoint operators. The Hausdorff distance of their spectra $\sigma(A), \sigma(B) \subset \mathbb{C}$ is defined to be

$$
d(\sigma(A), \sigma(B)):=\max \left\{\sup _{\alpha \in \sigma(A)}\left(\inf _{\beta \in \sigma(B)}|\alpha-\beta|\right), \sup _{\beta \in \sigma(B)}\left(\inf _{\alpha \in \sigma(A)}|\alpha-\beta|\right)\right\} .
$$

Prove the estimate

$$
d(\sigma(A), \sigma(B)) \leq\|A-B\|_{L(H, H)} .
$$

Remark. The Hausdorff distance d is in fact a distance on compact subsets of \mathbb{C}. In particular, it restricts to an actual distance function on the spectra of bounded linear operators.
13.5. Compact operator on space decomposition Let H be a Hilbert space over \mathbb{R} and let $A: H \rightarrow H$ be linear, compact and self-adjoint.
(i) State the spectral theorem for A.

Now, suppose the existence of two complementary and mutually orthogonal subspaces $H^{\prime}, H^{\prime \prime} \subset H$ that are A-invariant, meaning that

$$
H=H^{\prime} \oplus^{\perp} H^{\prime \prime}, \quad A\left(H^{\prime}\right) \subset H^{\prime}, \quad A\left(H^{\prime \prime}\right) \subset H^{\prime \prime}
$$

(ii) Show that each of the restricted operators $A^{\prime}:=A_{\mid H^{\prime}}$ and $A^{\prime \prime}:=A_{\mid H^{\prime \prime}}$ is also compact and self-adjoint.

Assume now that A is nonnegative definite (i.e., $(A x, x) \geq 0$ for all $x \in H)$.
(iii) State the Courant-Fischer characterization of the eigenvalues of A.
(iv) Denoted by $\lambda_{1}, \lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}$ the first (namely, the largest) eigenvalue of $A, A^{\prime}, A^{\prime \prime}$ respectively, show that

$$
\lambda_{1}=\max \left\{\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}\right\} .
$$

13.6. Heisenberg's uncertainty principle Let $^{*}\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. Let $D_{A}, D_{B} \subset H$ be dense subspaces and let $A: D_{A} \subset H \rightarrow H$ and $B: D_{B} \subset H \rightarrow H$ be symmetric linear operators. Under the necessary assumption that $A\left(D_{A} \cap D_{B}\right) \subset D_{B}$ and $B\left(D_{A} \cap D_{B}\right) \subset D_{A}$, the commutator

$$
\begin{aligned}
{[A, B]: D_{[A, B]} \subset H } & \rightarrow H \\
x & \mapsto A(B x)-B(A x)
\end{aligned}
$$

is a well-defined operator on $D_{[A, B]}:=D_{A} \cap D_{B}$.
(i) Prove the following inequality:

$$
\forall x \in D_{[A, B]}: \quad 2\|A x\|_{H}\|B x\|_{H} \geq\left|\langle x,[A, B] x\rangle_{H}\right|
$$

(ii) Given the symmetric operator $A: D_{A} \subset H \rightarrow H$ we define the standard deviation

$$
\varsigma(A, x):=\sqrt{\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}}
$$

at each $x \in D_{A}$ with $\|x\|_{H}=1$. Verify $\varsigma(A, x) \in \mathbb{R}$ and prove the following inequality:

$$
\forall x \in D_{[A, B]},\|x\|_{H}=1: \quad 2 \varsigma(A, x) \varsigma(B, x) \geq\left|\langle x,[A, B] x\rangle_{H}\right| .
$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $\|x\|_{H}=1$. Each observable is given by a symmetric linear operator $A: D_{A} \subset H \rightarrow H$. If the system is in state $x \in D_{A}$, we measure the observable A with uncertainty $\varsigma(A, x)$.
(iii) Let $A: D_{A} \rightarrow H$ and $B: D_{B} \rightarrow H$ be as above. The pair of operators (A, B) is called Heisenberg pair if

$$
[A, B]=i \operatorname{id}_{D_{[A, B]}} .
$$

Under the assumption that B has finite operator norm and $D_{B}=H$, prove that if (A, B) is a Heisenberg pair, then $A: D_{A} \subset H \rightarrow H$ cannot have finite operator norm.
(iv) Consider the Hilbert space $\left(H,\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}([0,1] ; \mathbb{C}),\langle\cdot, \cdot\rangle_{L^{2}}\right)$ and the subspace

$$
C_{0}^{1}([0,1] ; \mathbb{C}):=\left\{f \in L^{2}([0,1] ; \mathbb{C}) \mid f \in C^{1}([0,1] ; \mathbb{C}), f(0)=0=f(1)\right\}
$$

Here, we denote elements in the Hilbert space $L^{2}([0,1] ; \mathbb{C})$ by f and points in the interval $[0,1]$ by s. We understand $f \in C^{1}([0,1] ; \mathbb{C})$ if f has a representative in C^{1} and write $f^{\prime}=\frac{\mathrm{d}}{\mathrm{d} s} f$ in this case. Recall that in this sense, $C_{0}^{1}([0,1] ; \mathbb{C}) \subset L^{2}([0,1] ; \mathbb{C})$ is a dense subspace. The operators

$$
\begin{aligned}
P: C_{0}^{1}([0,1] ; \mathbb{C}) & \rightarrow L^{2}([0,1] ; \mathbb{C}), & Q: L^{2}([0,1] ; \mathbb{C}) & \rightarrow L^{2}([0,1] ; \mathbb{C}) \\
f(s) & \mapsto i f^{\prime}(s) & f(s) & \mapsto s f(s)
\end{aligned}
$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P, Q]: C_{0}^{1}([0,1] ; \mathbb{C}) \rightarrow L^{2}([0,1] ; \mathbb{C})$ is well-defined.

Show that (P, Q) is a Heisenberg pair and conclude the uncertainty principle:

$$
\forall f \in C_{0}^{1}([0,1] ; \mathbb{C}),\|f\|_{L^{2}([0,1] ; \mathbb{C})}=1: \quad \varsigma(P, f) \varsigma(Q, f) \geq \frac{1}{2}
$$

The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

13. Solutions

Solution of 13.1: Let $\lambda \in \tilde{\rho}(A)$. To show $\lambda \in \rho(A)$, we need to prove that $(\lambda-A): D_{A} \rightarrow$ X is surjective. Let $y \in X$. Since $(\lambda-A)$ has dense image, there exists a sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ in the image $Z(\lambda)$ of $(\lambda-A)$ such that $\left\|y_{n}-y\right\|_{X} \rightarrow 0$ as $n \rightarrow \infty$. Let $x_{n}=(\lambda-A)^{-1} y_{n} \in D_{A}$. Since $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y, and since

$$
\left\|x_{m}-x_{n}\right\|_{X}=\left\|(\lambda-A)^{-1}\left(y_{m}-y_{n}\right)\right\|_{X} \leq\left\|(\lambda-A)^{-1}\right\|_{L(Z(\lambda), X)}\left\|y_{m}-y_{n}\right\|_{X},
$$

we conclude that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in X. Since X is complete, there exists a limit point $X \ni x=\lim _{n \rightarrow \infty} x_{n}$. Moreover,

$$
A x_{n}=\lambda x_{n}-y_{n} \xrightarrow{n \rightarrow \infty} \lambda x-y .
$$

Since A has closed graph $x \in D_{A}$ with $A x=\lambda x-y$. This implies $y=(\lambda-A) x$. Thus, $(\lambda-A)$ is surjective and $\lambda \in \rho(A)$ follows. The reverse inclusion $\rho(A) \subset \tilde{\rho}(A)$ is trivial.

Solution of 13.2:

(i) Suppose, $T \in L(H, H)$ is a unitary operator. Then, T is invertible with inverse $T^{-1}=T^{*} \in L(H, H)$. In particular, T is bijective. T is also an isometry, because

$$
\forall x \in H: \quad\|T x\|_{H}^{2}=\langle T x, T x\rangle_{H}=\left\langle T^{*} T x, x\right\rangle_{H}=\langle x, x\rangle_{H}=\|x\|_{H}^{2} .
$$

Conversely, suppose, $T \in L(H, H)$ is a bijective isometry. Then, $\|T x\|_{H}^{2}=\|x\|_{H}^{2}$ for every $x \in H$. From the (complex) polarization identity

$$
\langle x, y\rangle_{H}=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)+\frac{i}{4}\left(\|x+i y\|_{H}^{2}-\|x-i y\|_{H}^{2}\right)
$$

(which is motivated by the parallelogram identity), we conclude $\langle T x, T y\rangle_{H}=\langle x, y\rangle_{H}$ for every $x, y \in H$. In other words, isometries preserve the scalar product. Therefore,

$$
\left\langle T^{*} T x, y\right\rangle_{H}=\langle T x, T y\rangle_{H}=\langle x, y\rangle_{H}
$$

for every $x, y \in H$ which implies $T^{*} T x=x$ for every $x \in H$. Since T is bijective, we obtain $T^{*}=T^{-1}$ which means that T is unitary.
(ii) Let $T \in L(H, H)$ be unitary. Part (i) implies that T and $T^{*}=T^{-1}$ are bijective isometries. Therefore, $\|T\|=1=\left\|T^{*}\right\|$. Since the spectral radius of T is bounded from above by $\|T\|=1$, we obtain $\{\lambda \in \mathbb{C}||\lambda|>1\} \subset \rho(T)$ from Satz 6.5.3.i.

Given $\lambda \in \mathbb{C}$ with $0 \leq|\lambda|<1$, the spectral radius of the operator λT^{*} is bounded from above by $\left\|\lambda T^{*}\right\|=|\lambda|<1$. Thus, $\left(1-\lambda T^{*}\right)$ is invertible on H by Satz 2.2.7. Hence, $(\lambda-T)=-T \circ\left(1-\lambda T^{*}\right)$ is bijective as composition of bijective operators and we obtain $\lambda \in \rho(T)$. To conclude, $\sigma(T) \subset \mathbb{S}^{1}$.

Solution of 13.3: From $k(x, y)=k(y, x)$ for almost every $(x, y) \in \Omega \times \Omega$ and with the help of Fubini's theorem, we conclude that the integral operator $K: L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is symmetric. Indeed we have

$$
\begin{aligned}
\forall f, g \in L^{2}(\Omega): \quad\langle K f, g\rangle_{L^{2}(\Omega)} & =\int_{\Omega}\left(\int_{\Omega} k(x, y) f(y) \mathrm{d} y\right) g(x) \mathrm{d} x \\
& =\int_{\Omega} f(y)\left(\int_{\Omega} k(y, x) g(x) \mathrm{d} x\right) \mathrm{d} y=\langle f, K g\rangle_{L^{2}(\Omega)}
\end{aligned}
$$

In fact, K is self-adjoint, since moreover it holds $D_{K}=L^{2}(\Omega)=D_{K^{*}}$. Therefore, the operator $A=(1-K): L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is also self-adjoint (Beispiel 6.4.2.ii).

According to Problem 11.5 (ii), K is a compact operator, which implies that the operator $A=(1-K)$ has closed image $\operatorname{im}(A) \subset H$. According to Banach's closed range theorem, this is equivalent to $\operatorname{im}(A)=\operatorname{ker}\left(A^{*}\right)^{\perp}$. Since $A^{*}=A$, we conclude

$$
A \text { surjective } \Longleftrightarrow H=\operatorname{im}(A)=\operatorname{ker}(A)^{\perp} \Longleftrightarrow \operatorname{ker}(A)=\{0\} \Longleftrightarrow A \text { injective. }
$$

Solution of 13.4:

(i) Given the self-adjoint operator $A \in L(H, H)$ and an element $\lambda \in \rho(A)$, the operator $(\lambda-A) \in L(H, H)$ is bijective with inverse $R_{\lambda}=(\lambda-A)^{-1} \in L(H, H)$. Problem 11.2 (i) then implies that R_{λ}^{*} is an isomorphism and according to Problem 11.1 (iii),

$$
R_{\lambda}^{*}=\left((\lambda-A)^{-1}\right)^{*}=\left((\lambda-A)^{*}\right)^{-1}=\left(\bar{\lambda}-A^{*}\right)^{-1}=(\bar{\lambda}-A)^{-1}=R_{\bar{\lambda}} .
$$

Alternatively, for any $x, y \in H$, we can directly compute

$$
\begin{aligned}
\langle x, y\rangle_{H} & =\left\langle(\lambda-A) R_{\lambda} x, y\right\rangle_{H}=\left\langle\lambda R_{\lambda} x, y\right\rangle_{H}-\left\langle A R_{\lambda} x, y\right\rangle_{H} \\
& =\left\langle R_{\lambda} x, \bar{\lambda} y\right\rangle_{H}-\left\langle R_{\lambda} x, A y\right\rangle_{H}=\left\langle R_{\lambda} x,(\bar{\lambda}-A) y\right\rangle_{H}=\left\langle x, R_{\lambda}^{*}(\bar{\lambda}-A) y\right\rangle_{H}
\end{aligned}
$$

which implies $R_{\lambda}^{*}(\bar{\lambda}-A) y=y$ for any $y \in H$. According to Satz 6.5.2, resolvents commute: $R_{\lambda} R_{\bar{\lambda}}=R_{\bar{\lambda}} R_{\lambda}$. This implies that R_{λ} is a normal operator: $R_{\lambda} R_{\lambda}^{*}=R_{\lambda}^{*} R_{\lambda}$.
(ii) Let $A, B \in L(H, H)$ be self-adjoint operators. By symmetry of the Hausdorff distance (in the sense that we can switch the roles of A and B), it suffices to prove

$$
\sup _{\alpha \in \sigma(A)}\left(\inf _{\beta \in \sigma(B)}|\alpha-\beta|\right) \leq\|A-B\|_{L(H, H)} .
$$

The claim follows, if we show the following implication for any $\alpha \in \mathbb{C}$:

$$
\inf _{\beta \in \sigma(B)}|\alpha-\beta|>\|A-B\|_{L(H, H)} \quad \Longrightarrow \alpha \in \rho(A)=\mathbb{C} \backslash \sigma(A) .
$$

Let $\alpha \in \mathbb{C}$ satisfy $\inf _{\beta \in \sigma(B)}|\alpha-\beta|>\|A-B\|_{L(H, H)}$. Since the claim is trivial otherwise, we may assume $\|A-B\|_{L(H, H)}>0$. Then, α has positive distance from $\sigma(B)$ which implies $\alpha \in \rho(B)$. Hence, $(\alpha-B)^{-1}$ is well-defined and we obtain

$$
\begin{equation*}
(\alpha-A)=(\alpha-B)-(A-B)=\left(1-(A-B)(\alpha-B)^{-1}\right)(\alpha-B) \tag{*}
\end{equation*}
$$

Since $(\alpha-B)$ is bijective, it remains to prove that $\left(1-(A-B)(\alpha-B)^{-1}\right)$ is bijective. This follows from Satz 2.2.7 if we prove $\left\|(A-B)(\alpha-B)^{-1}\right\|_{L(H, H)}<1$.
Consider the rational function $f_{\alpha}: \mathbb{C} \rightarrow \mathbb{C}$ given by $f_{\alpha}(z)=(\alpha-z)^{-1}$. By assumption,

$$
\frac{1}{\|A-B\|}>\frac{1}{\inf _{\beta \in \sigma(B)}|\alpha-\beta|}=\sup _{\beta \in \sigma(B)} \frac{1}{|\alpha-\beta|}=\sup \left\{|x| \mid x \in f_{\alpha}(\sigma(B))\right\} .
$$

The spectral mapping theorem (Satz 6.5.4) implies $f_{\alpha}(\sigma(B))=\sigma\left(f_{\alpha}(B)\right)$. Thus,

$$
\frac{1}{\|A-B\|}>\sup \left\{|x| \mid x \in \sigma\left(f_{\alpha}(B)\right)\right\}=\sup _{x \in \sigma\left(f_{\alpha}(B)\right)}|x|=r_{f_{\alpha}(B)}
$$

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since $f_{\alpha}(B)=$ $(\alpha-B)^{-1}=: R$ is a resolvent of B, it is a normal operator by (i). Hence,

$$
\begin{aligned}
\|R x\|_{H}^{2} & =\langle R x, R x\rangle_{H}=\left\langle R^{*} R x, x\right\rangle_{H}=\left\langle R R^{*} x, x\right\rangle_{H}=\left\langle R^{*} x, R^{*} x\right\rangle_{H}=\left\|R^{*} x\right\|_{H}^{2}, \\
\|R x\|_{H}^{2} & =\left\langle R^{*} R x, x\right\rangle_{H} \leq\left\|R^{*} R x\right\|_{H}\|x\|_{H} \leq\left\|R^{*} R\right\|\|x\|_{H}^{2}, \\
\Longrightarrow\|R\|^{2} & \leq\left\|R^{*} R\right\| \leq\left\|R^{*}\right\|\|R\|=\|R\|^{2}, \\
\Longrightarrow\|R\|^{2} & =\left\|R^{*} R\right\|=\sup _{\|x\|_{H}=1}\left\|R^{*}(R x)\right\|_{H}=\sup _{\|x\|_{H}=1}\|R(R x)\|_{H}=\left\|R^{2}\right\| .
\end{aligned}
$$

(Note how the last identity makes use of the first identity.) Inductively, we obtain $\|R\|^{2^{n}}=\left\|R^{2^{n}}\right\|$ for every $n \in \mathbb{N}$ which implies $r_{f_{\alpha}(B)}=r_{R}=\|R\|=\left\|(\alpha-B)^{-1}\right\|$. Combined with estimate (\dagger), we obtain $\frac{1}{\|A-B\|}>\left\|(\alpha-B)^{-1}\right\|$, which yields

$$
\left\|(A-B)(\alpha-B)^{-1}\right\| \leq\|A-B\|\left\|(\alpha-B)^{-1}\right\|<1
$$

and proves the claim. From $(*)$ we then conclude $\alpha \in \rho(A)$.

Solution of 13.5:

(i) Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space and let $A: H \rightarrow H$ be linear, compact and self-adjoint and $A \neq 0$. Then there exist at most countably many eigenvalues $\lambda_{k} \in \mathbb{R} \backslash\{0\}$ which can accumulate only at $0 \in \mathbb{R}$ and corresponding eigenvectors $e_{k} \in H$ such that

$$
\forall x \in H: \quad A x=\sum_{k} \lambda_{k}\left\langle x, e_{k}\right\rangle e_{k} .
$$

(ii) As an orthogonal complement of $H^{\prime \prime}$ the subspace $H^{\prime} \subset H$ is closed and $\left(H^{\prime},\langle\cdot, \cdot\rangle\right)$ is Hilbertean. Let $B_{1} \subset H$ be the unit ball in H and $B_{1}^{\prime} \subset H^{\prime}$ the unit ball in H^{\prime}. Then, $\overline{A^{\prime} B_{1}^{\prime}}=\overline{A B_{1}^{\prime}}$ is compact as closed subset of the compact set $\overline{A B_{1}}$. Therefore, $A^{\prime}: H^{\prime} \rightarrow H^{\prime}$ and analogously $A^{\prime \prime}: H^{\prime \prime} \rightarrow H^{\prime \prime}$ are compact operators.

Moreover, we have

$$
\forall x, y \in H^{\prime}: \quad\left\langle A^{\prime} x, y\right\rangle=\langle A x, y\rangle=\langle x, A y\rangle=\left\langle x, A^{\prime} y\right\rangle
$$

Hence, $A^{\prime}: H^{\prime} \rightarrow H^{\prime}$ is symmetric and hence self-adjoint being defined on all of H^{\prime}. Self-adjointness of $A^{\prime \prime}: H^{\prime \prime} \rightarrow H^{\prime \prime}$ follows analogously.
(iii) The Courant-Fischer characterization of the k-th eigenvalue λ_{k} of A is

$$
\lambda_{k}=\sup _{\substack{M \subset H, \operatorname{dim} M=k \\ \operatorname{dim} M x \|=1}} \inf _{\substack{x \in M, \| x,}}\langle x, A x\rangle .
$$

(iv) By the Courant-Fischer characterization

$$
\lambda_{1}=\sup _{\substack{x \in H,\|x\|=1}}\langle x, A x\rangle \geq \sup _{\substack{x^{\prime} \in H^{\prime},\left\|x^{\prime}\right\|=1}}\left\langle x^{\prime}, A x^{\prime}\right\rangle=\sup _{\substack{x^{\prime} \in H^{\prime},\left\|x^{\prime}\right\|=1}}\left\langle x^{\prime}, A^{\prime} x^{\prime}\right\rangle=\lambda_{1}^{\prime} .
$$

Analogously, $\lambda_{1} \geq \lambda_{1}^{\prime \prime}$, hence we have $\lambda_{1} \geq \max \left\{\lambda_{1}^{\prime}, \lambda_{1}^{\prime \prime}\right\}$.
If $e_{1}=e_{1}^{\prime}+e_{1}^{\prime \prime} \in H^{\prime} \oplus H^{\prime \prime}$ is an eigenvector of A relative to its first eigenvalue $\lambda_{1}>0$, then

$$
\begin{gathered}
A^{\prime} e_{1}^{\prime}+A^{\prime \prime} e_{1}^{\prime \prime}=A e_{1}=\lambda_{1} e_{1}^{\prime}+\lambda_{1} e_{1}^{\prime \prime} \\
\Longrightarrow \\
\Longrightarrow\left\{\begin{array}{l}
\left\langle e_{1}^{\prime}, A^{\prime} e_{1}^{\prime}\right\rangle=\lambda_{1}\left\langle e_{1}^{\prime}, e_{1}^{\prime}\right\rangle \\
\left\langle e_{1}^{\prime \prime}, A^{\prime \prime} e_{1}^{\prime \prime}\right\rangle=\lambda_{1}\left\langle e_{1}^{\prime \prime}, e_{1}^{\prime \prime}\right\rangle
\end{array}\right.
\end{gathered}
$$

If $e_{1}^{\prime} \neq 0$, then $e_{1}^{\prime} /\left\|e_{1}^{\prime}\right\|$ is an eigenvector with eingevalue λ_{1} and we obtain $\lambda_{1}^{\prime} \geq \lambda_{1}$. Analogously, if $e_{1}^{\prime \prime} \neq 0$, then $e_{1}^{\prime \prime} /\left\|e_{1}^{\prime \prime}\right\|$ is an eigenvector with eingevalue λ_{1} and we obtain $\lambda_{1}^{\prime \prime} \geq \lambda_{1}$. Since $e_{1} \neq 0$, one of these two cases must be true, and we conclude $\lambda_{1}=$ $\max \left\{\lambda_{1}, \lambda_{2}\right\}$.

Solution of 13.6: Let $A: D_{A} \subset H \rightarrow H$ and $B: D_{B} \subset H \rightarrow H$ be densely defined, symmetric linear operators on the Hilbert space $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ such that $A\left(D_{A}\right) \subset D_{B}$ and $B\left(D_{B}\right) \subset D_{A}$.
(i) Let $x \in D_{[A, B]}:=D_{A} \cap D_{B}$. Then, applying the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\langle x,[A, B] x\rangle_{H}\right| & \leq\left|\langle x, A(B x)\rangle_{H}\right|+\left|\langle x, B(A x)\rangle_{H}\right|=\left|\langle A x, B x\rangle_{H}\right|+\left|\langle B x, A x\rangle_{H}\right| \\
& \leq 2\|A x\|_{H}\|B x\|_{H} .
\end{aligned}
$$

(ii) Since A is a symmetric operator, $\langle x, A x\rangle_{H}$ is real for any $x \in D_{A} \subset D_{A^{*}}$. Indeed,

$$
\langle x, A x\rangle_{H}=\left\langle A^{*} x, x\right\rangle_{H}=\langle A x, x\rangle_{H}=\overline{\langle x, A x\rangle}_{H} .
$$

Moreover, for $x \in D_{A}$ with $\|x\|_{H}=1$, we have

$$
\langle x, A x\rangle_{H}^{2} \leq\|x\|_{H}^{2}\|A x\|_{H}^{2}=\langle A x, A x\rangle_{H}
$$

Therefore,

$$
\mathbb{R} \ni \varsigma(A, x):=\sqrt{\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}} .
$$

For any $\lambda, \mu \in \mathbb{R}$, the commutators $[A, B]$ and $[A-\lambda, B-\mu]$ agree:

$$
\begin{aligned}
{[A-\lambda, B-\mu] } & =(A-\lambda)(B-\mu)-(B-\mu)(A-\lambda) \\
& =A B-\mu A-\lambda B+\lambda \mu-B A+\lambda B+\mu A-\lambda \mu=[A, B] .
\end{aligned}
$$

Since A is symmetric and $\lambda \in \mathbb{R}$, the operator $\tilde{A}=A-\lambda$ is also symmetric on $D_{\tilde{A}}=D_{A}$. Moreover, for any $x \in D_{A}$,

$$
\begin{aligned}
\|\tilde{A} x\|_{H}^{2} & =\langle\tilde{A} x, \tilde{A} x\rangle_{H}=\langle A x-\lambda x, A x-\lambda x\rangle_{H} \\
& =\langle A x, A x\rangle_{H}-\lambda\langle x, A x\rangle_{H}-\lambda\langle A x, x\rangle_{H}+\lambda^{2}\langle x, x\rangle_{H} \\
& =\langle A x, A x\rangle_{H}-2 \lambda\langle x, A x\rangle_{H}+\lambda^{2}\langle x, x\rangle_{H} .
\end{aligned}
$$

We observe that if we choose $\lambda=\langle x, A x\rangle_{H} \in \mathbb{R}$ and if $\|x\|_{H}=1$, then

$$
\|\tilde{A} x\|_{H}^{2}=\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}=\varsigma(A, x)^{2} .
$$

Now, let $x \in D_{[A, B]}:=D_{A} \cap D_{B}$ with $\|x\|_{H}=1$ be arbitrary. Since the operators $\tilde{A}:=A-\langle x, A x\rangle_{H}$ and $\tilde{B}:=B-\langle x, B x\rangle_{H}$ are symmetric, part (i) applies and yields

$$
\left|\langle x,[A, B] x\rangle_{H}\right|=\left|\langle x,[\tilde{A}, \tilde{B}] x\rangle_{H}\right| \leq 2\|\tilde{A} x\|_{H}\|\tilde{B} x\|_{H}=2 \varsigma(A, x) \varsigma(B, x) .
$$

(iii) Suppose, $B: H \rightarrow H$ with finite operator norm and $A: D_{A} \subset H \rightarrow H$ satisfy

$$
[A, B]=i \operatorname{id}_{D_{[A, B]}}
$$

By assumption, $D_{[A, B]}=D_{A} \cap H=D_{A}$ and $B\left(D_{A}\right) \subset D_{A}$. In particular, for any $n \in \mathbb{N}$ the inclusion $B^{n}\left(D_{A}\right) \subset D_{A}$ is satisfied, which is necessary to define $\left[A, B^{n}\right]$. We prove $\left[A, B^{n}\right]=n i B^{n-1}$ by induction. For $n=1$, the claim holds by assumption. Suppose, it is true for some $n \in \mathbb{N}$. Then

$$
\begin{aligned}
{\left[A, B^{n+1}\right] } & =A B^{n+1}-B^{n+1} A=\left(A B^{n}-B^{n} A+B^{n} A\right) B-B^{n+1} A \\
& =\left(\left[A, B^{n}\right]+B^{n} A\right) B-B^{n+1} A=n i B^{n-1} B+B^{n} A B-B^{n+1} A \\
& =n i B^{n}+B^{n}[A, B]=n i B^{n}+i B^{n}=(n+1) i B^{n} .
\end{aligned}
$$

A consequence is that B cannot be nilpotent: if $B^{n}=0$ for some $n \in \mathbb{N}$, then $B^{n-1}=$ $\frac{1}{n i}\left[A, B^{n}\right]=0$ which iterates to $B=0$ in contradiction to $[A, B] \neq 0$. Suppose, A has finite operator norm $\|A\|$. Then,

$$
n\left\|B^{n-1}\right\|=\left\|\left[A, B^{n}\right]\right\| \leq\left\|A B^{n}\right\|+\left\|B^{n} A\right\| \leq 2\|A\|\left\|B^{n-1}\right\|\|B\| .
$$

Since $\left\|B^{n-1}\right\| \neq 0$, we obtain $2\|A\| \geq \frac{n}{\|B\|}$ which contradicts $n \in \mathbb{N}$ being arbitrary.
(iv) If $f \in C^{1}([0,1] ; \mathbb{C})$, then f^{\prime} is bounded and in particular $f^{\prime} \in L^{2}([0,1] ; \mathbb{C})$. The map $[0,1] \ni s \mapsto s$ is also bounded. Therefore, the linear operators

$$
\begin{aligned}
P: C_{0}^{1}([0,1] ; \mathbb{C}) & \rightarrow L^{2}([0,1] ; \mathbb{C}), & Q: L^{2}([0,1] ; \mathbb{C}) & \rightarrow L^{2}([0,1] ; \mathbb{C}) \\
f(s) & \mapsto i f^{\prime}(s) & f(s) & \mapsto s f(s)
\end{aligned}
$$

are indeed well-defined. They are also symmetric. For Q this follows trivially from $s \in[0,1] \subset \mathbb{R}$. Given any $f, g \in D_{P}:=C_{0}^{1}([0,1] ; \mathbb{C})$, we have

$$
\langle P f, g\rangle_{L^{2}}=\int_{0}^{1} i f^{\prime}(s) \bar{g}(s) \mathrm{d} s=-\int_{0}^{1} i f(s) \bar{g}^{\prime}(s) \mathrm{d} s=\int_{0}^{1} f(s) \overline{i g^{\prime}(s)} \mathrm{d} s=\langle f, P g\rangle_{L^{2}} .
$$

When integrating by parts, the boundary terms vanish due to $f(0)=0=f(1)$. Hence, $P: C_{0}^{1}([0,1] ; \mathbb{C}) \rightarrow L^{2}([0,1] ; \mathbb{C})$ is symmetric (but not self-adjoint! see Beispiel 6.6.1).
Next, we verify that the commutator $[P, Q]$ is well-defined. Since $D_{Q}=L^{2}([0,1] ; \mathbb{C})$ is the whole space, the only thing to check is that $Q f: s \mapsto s f(s)$ is in $D_{P}=C_{0}^{1}([0,1] ; \mathbb{C})$ whenever $f \in D_{[P, Q]}=C_{0}^{1}([0,1] ; \mathbb{C})$. But this follows trivially from the product rule. Moreover,

$$
([P, Q] f)(s)=(P(Q f))(s)-(Q(P f))(s)=i f(s)+i s f^{\prime}(s)-s i f^{\prime}(s)=i f(s)
$$

for almost every $s \in[0,1]$ which proves that (P, Q) is a Heisenberg pair. Finally, by part (ii), we have

$$
\forall f \in C_{0}^{1},\|f\|_{L^{2}}=1: \quad \varsigma(P, f) \varsigma(Q, f) \geq \frac{1}{2}\left|\langle f,[P, Q] f\rangle_{L^{2}}\right|=\frac{1}{2}\left|\langle f, i f\rangle_{L^{2}}\right|=\frac{1}{2}
$$

