13.1. Definitions of resolvent set \mathfrak{S} . Let $(X, \|\cdot\|_X)$ be a Banach space over \mathbb{C} and let $A: D_A \subset X \to X$ be a linear operator. Prove that if A has closed graph, then the following sets coincide.

$$\rho(A) = \{\lambda \in \mathbb{C} \mid (\lambda - A) \colon D_A \to X \text{ is bijective, } \exists (\lambda - A)^{-1} \in L(X, X) \},$$
$$\tilde{\rho}(A) = \{\lambda \in \mathbb{C} \mid (\lambda - A) \colon D_A \to X \text{ is injective with dense image,} \\ \exists (\lambda - A)^{-1} \in L(Z(\lambda), X) \},$$

where we have set $Z(\lambda) := (\lambda - A)(D_A)$, i.e., the image of $\lambda - A$, and $(\lambda - A)^{-1} \in L(Z(\lambda), X)$ means that the (necessarily linear) set-theoretic inverse of $\lambda - A$ is bounded, in the usual sense that $\sup_{z \in Z_{\lambda}, ||z||_{X} < 1} ||(\lambda - A)^{-1}(z)|| < \infty$.

Remark. In the literature, the resolvent set is often defined to be $\tilde{\rho}(A)$ rather than $\rho(A)$. Since as soon as $\rho(A)$ is not empty A has closed graph, this problem shows that the two perspectives are in fact equivalent.

13.2. Unitary operators $\boldsymbol{\mathscr{D}}$.

Definition. Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . An invertible linear operator $T \in L(H, H)$ is called *unitary*, if $T^* = T^{-1}$.

- (i) Prove that $T \in L(H, H)$ is unitary if and only if T is a bijective isometry.
- (ii) Prove that if $T \in L(H, H)$ is unitary, then its spectrum lies on the unit circle:

$$\sigma(T) \subset \mathbb{S}^1 := \{\lambda \in \mathbb{C} \mid |\lambda| = 1\}.$$

13.3. Integral operators revisited \mathfrak{C} . Let $\Omega \subset \mathbb{R}^m$ be a bounded subset. Given $k \in L^2(\Omega \times \Omega)$ such that k(x, y) = k(y, x) for almost every $(x, y) \in \Omega \times \Omega$, consider the operator $K \colon L^2(\Omega) \to L^2(\Omega)$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) \, \mathrm{d}y$$

and the operator

$$A: L^{2}(\Omega) \to L^{2}(\Omega)$$
$$f \mapsto f - Kf.$$

Prove that injectivity of A and surjectivity of A are equivalent.

13.4. Resolvents and spectral distance \mathfrak{P} **\mathbb{C}**. Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} .

(i) Let $A \in L(H, H)$ be a self-adjoint operator and let $\lambda \in \rho(A)$ be an element in its resolvent set. Show that the resolvent $R_{\lambda} := (\lambda - A)^{-1}$ is a *normal* operator, i.e.,

$$R_{\lambda}R_{\lambda}^* = R_{\lambda}^*R_{\lambda}.$$

(ii) Let $A, B \in L(H, H)$ be self-adjoint operators. The Hausdorff distance of their spectra $\sigma(A), \sigma(B) \subset \mathbb{C}$ is defined to be

$$d(\sigma(A), \sigma(B)) := \max\left\{\sup_{\alpha \in \sigma(A)} \left(\inf_{\beta \in \sigma(B)} |\alpha - \beta|\right), \sup_{\beta \in \sigma(B)} \left(\inf_{\alpha \in \sigma(A)} |\alpha - \beta|\right)\right\}.$$

Prove the estimate

$$d(\sigma(A), \sigma(B)) \le ||A - B||_{L(H,H)}.$$

Remark. The Hausdorff distance d is in fact a distance on compact subsets of \mathbb{C} . In particular, it restricts to an actual distance function on the spectra of bounded linear operators.

13.5. Compact operator on space decomposition \Box . Let *H* be a Hilbert space over \mathbb{R} and let $A: H \to H$ be linear, compact and self-adjoint.

(i) State the spectral theorem for A.

Now, suppose the existence of two complementary and mutually orthogonal subspaces $H', H'' \subset H$ that are A-invariant, meaning that

- $H = H' \oplus^{\perp} H'', \qquad A(H') \subset H', \qquad A(H'') \subset H''.$
- (ii) Show that each of the restricted operators $A' := A_{|H'|}$ and $A'' := A_{|H''|}$ is also compact and self-adjoint.

Assume now that A is nonnegative definite (i.e., $(Ax, x) \ge 0$ for all $x \in H$).

- (iii) State the Courant–Fischer characterization of the eigenvalues of A.
- (iv) Denoted by $\lambda_1, \lambda'_1, \lambda''_1$ the first (namely, the *largest*) eigenvalue of A, A', A'' respectively, show that

$$\lambda_1 = \max\{\lambda_1', \lambda_1''\}.$$

13.6. Heisenberg's uncertainty principle C. Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . Let $D_A, D_B \subset H$ be dense subspaces and let $A: D_A \subset H \to H$ and $B: D_B \subset H \to H$ be symmetric linear operators. Under the necessary assumption that $A(D_A \cap D_B) \subset D_B$ and $B(D_A \cap D_B) \subset D_A$, the *commutator*

$$[A, B]: D_{[A,B]} \subset H \to H$$
$$x \mapsto A(Bx) - B(Ax)$$

is a well-defined operator on $D_{[A,B]} := D_A \cap D_B$.

(i) Prove the following inequality:

 $\forall x \in D_{[A,B]}: \qquad 2\|Ax\|_H \|Bx\|_H \ge \Big| \langle x, [A,B]x \rangle_H \Big|.$

(ii) Given the symmetric operator $A: D_A \subset H \to H$ we define the standard deviation

$$\varsigma(A, x) := \sqrt{\langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2}$$

at each $x \in D_A$ with $||x||_H = 1$. Verify $\varsigma(A, x) \in \mathbb{R}$ and prove the following inequality:

$$\forall x \in D_{[A,B]}, \ \|x\|_H = 1: \quad 2\varsigma(A,x)\,\varsigma(B,x) \ge \left| \langle x, [A,B]x \rangle_H \right|.$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $||x||_H = 1$. Each observable is given by a symmetric linear operator $A: D_A \subset H \to H$. If the system is in state $x \in D_A$, we measure the observable A with uncertainty $\varsigma(A, x)$.

(iii) Let $A: D_A \to H$ and $B: D_B \to H$ be as above. The pair of operators (A, B) is called *Heisenberg pair* if

$$[A,B] = i \operatorname{id}_{D_{[A,B]}}$$

Under the assumption that B has finite operator norm and $D_B = H$, prove that if (A, B) is a Heisenberg pair, then $A: D_A \subset H \to H$ cannot have finite operator norm.

(iv) Consider the Hilbert space $(H, \langle \cdot, \cdot \rangle_H) = (L^2([0, 1]; \mathbb{C}), \langle \cdot, \cdot \rangle_{L^2})$ and the subspace

$$C_0^1([0,1];\mathbb{C}) := \{ f \in L^2([0,1];\mathbb{C}) \mid f \in C^1([0,1];\mathbb{C}), \ f(0) = 0 = f(1) \}.$$

Here, we denote elements in the Hilbert space $L^2([0,1];\mathbb{C})$ by f and points in the interval [0,1] by s. We understand $f \in C^1([0,1];\mathbb{C})$ if f has a representative in C^1 and write $f' = \frac{d}{ds}f$ in this case. Recall that in this sense, $C_0^1([0,1];\mathbb{C}) \subset L^2([0,1];\mathbb{C})$ is a dense subspace. The operators

$$P: C_0^1([0,1]; \mathbb{C}) \to L^2([0,1]; \mathbb{C}), \qquad Q: L^2([0,1]; \mathbb{C}) \to L^2([0,1]; \mathbb{C}) \\ f(s) \mapsto if'(s) \qquad f(s) \mapsto sf(s)$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P,Q]: C_0^1([0,1];\mathbb{C}) \to L^2([0,1];\mathbb{C})$ is well-defined.

Show that (P, Q) is a Heisenberg pair and conclude the uncertainty principle:

$$\forall f \in C_0^1([0,1];\mathbb{C}), \ \|f\|_{L^2([0,1];\mathbb{C})} = 1: \quad \varsigma(P,f)\,\varsigma(Q,f) \ge \frac{1}{2}.$$

The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

13. Solutions

Solution of 13.1: Let $\lambda \in \tilde{\rho}(A)$. To show $\lambda \in \rho(A)$, we need to prove that $(\lambda - A) : D_A \to X$ is surjective. Let $y \in X$. Since $(\lambda - A)$ has dense image, there exists a sequence $(y_n)_{n \in \mathbb{N}}$ in the image $Z(\lambda)$ of $(\lambda - A)$ such that $||y_n - y||_X \to 0$ as $n \to \infty$. Let $x_n = (\lambda - A)^{-1}y_n \in D_A$. Since $(y_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y, and since

$$||x_m - x_n||_X = ||(\lambda - A)^{-1}(y_m - y_n)||_X \le ||(\lambda - A)^{-1}||_{L(Z(\lambda), X)}||y_m - y_n||_X,$$

we conclude that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence in X. Since X is complete, there exists a limit point $X \ni x = \lim_{n \to \infty} x_n$. Moreover,

$$Ax_n = \lambda x_n - y_n \xrightarrow{n \to \infty} \lambda x - y.$$

Since A has closed graph $x \in D_A$ with $Ax = \lambda x - y$. This implies $y = (\lambda - A)x$. Thus, $(\lambda - A)$ is surjective and $\lambda \in \rho(A)$ follows. The reverse inclusion $\rho(A) \subset \tilde{\rho}(A)$ is trivial.

Solution of 13.2:

(i) Suppose, $T \in L(H, H)$ is a unitary operator. Then, T is invertible with inverse $T^{-1} = T^* \in L(H, H)$. In particular, T is bijective. T is also an isometry, because

$$\forall x \in H: \qquad \|Tx\|_{H}^{2} = \langle Tx, Tx \rangle_{H} = \langle T^{*}Tx, x \rangle_{H} = \langle x, x \rangle_{H} = \|x\|_{H}^{2}.$$

Conversely, suppose, $T \in L(H, H)$ is a bijective isometry. Then, $||Tx||_{H}^{2} = ||x||_{H}^{2}$ for every $x \in H$. From the (complex) polarization identity

$$\langle x, y \rangle_H = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right) + \frac{i}{4} \left(\|x + iy\|_H^2 - \|x - iy\|_H^2 \right)$$

(which is motivated by the parallelogram identity), we conclude $\langle Tx, Ty \rangle_H = \langle x, y \rangle_H$ for every $x, y \in H$. In other words, isometries preserve the scalar product. Therefore,

$$\langle T^*Tx, y \rangle_H = \langle Tx, Ty \rangle_H = \langle x, y \rangle_H$$

for every $x, y \in H$ which implies $T^*Tx = x$ for every $x \in H$. Since T is bijective, we obtain $T^* = T^{-1}$ which means that T is unitary.

(ii) Let $T \in L(H, H)$ be unitary. Part (i) implies that T and $T^* = T^{-1}$ are bijective isometries. Therefore, $||T|| = 1 = ||T^*||$. Since the spectral radius of T is bounded from above by ||T|| = 1, we obtain $\{\lambda \in \mathbb{C} \mid |\lambda| > 1\} \subset \rho(T)$ from Satz 6.5.3.i.

Given $\lambda \in \mathbb{C}$ with $0 \leq |\lambda| < 1$, the spectral radius of the operator λT^* is bounded from above by $\|\lambda T^*\| = |\lambda| < 1$. Thus, $(1 - \lambda T^*)$ is invertible on H by Satz 2.2.7. Hence, $(\lambda - T) = -T \circ (1 - \lambda T^*)$ is bijective as composition of bijective operators and we obtain $\lambda \in \rho(T)$. To conclude, $\sigma(T) \subset \mathbb{S}^1$. **Solution of 13.3:** From k(x, y) = k(y, x) for almost every $(x, y) \in \Omega \times \Omega$ and with the help of Fubini's theorem, we conclude that the integral operator $K \colon L^2(\Omega) \to L^2(\Omega)$ is symmetric. Indeed we have

$$\begin{aligned} \forall f,g \in L^2(\Omega) : \quad \langle Kf,g \rangle_{L^2(\Omega)} &= \int_{\Omega} \left(\int_{\Omega} k(x,y) f(y) \, \mathrm{d}y \right) g(x) \, \mathrm{d}x \\ &= \int_{\Omega} f(y) \left(\int_{\Omega} k(y,x) g(x) \, \mathrm{d}x \right) \mathrm{d}y = \langle f,Kg \rangle_{L^2(\Omega)}. \end{aligned}$$

In fact, K is self-adjoint, since moreover it holds $D_K = L^2(\Omega) = D_{K^*}$. Therefore, the operator $A = (1 - K) : L^2(\Omega) \to L^2(\Omega)$ is also self-adjoint (Beispiel 6.4.2.ii).

According to Problem 11.5 (ii), K is a compact operator, which implies that the operator A = (1 - K) has closed image $im(A) \subset H$. According to Banach's closed range theorem, this is equivalent to $im(A) = ker(A^*)^{\perp}$. Since $A^* = A$, we conclude

A surjective $\iff H = \operatorname{im}(A) = \operatorname{ker}(A)^{\perp} \iff \operatorname{ker}(A) = \{0\} \iff A \text{ injective.}$

Solution of 13.4:

(i) Given the self-adjoint operator $A \in L(H, H)$ and an element $\lambda \in \rho(A)$, the operator $(\lambda - A) \in L(H, H)$ is bijective with inverse $R_{\lambda} = (\lambda - A)^{-1} \in L(H, H)$. Problem 11.2 (i) then implies that R_{λ}^* is an isomorphism and according to Problem 11.1 (iii),

$$R_{\lambda}^{*} = \left((\lambda - A)^{-1} \right)^{*} = \left((\lambda - A)^{*} \right)^{-1} = (\overline{\lambda} - A^{*})^{-1} = (\overline{\lambda} - A)^{-1} = R_{\overline{\lambda}}.$$

Alternatively, for any $x, y \in H$, we can directly compute

$$\langle x, y \rangle_H = \langle (\lambda - A) R_\lambda x, y \rangle_H = \langle \lambda R_\lambda x, y \rangle_H - \langle A R_\lambda x, y \rangle_H = \langle R_\lambda x, \overline{\lambda} y \rangle_H - \langle R_\lambda x, A y \rangle_H = \langle R_\lambda x, (\overline{\lambda} - A) y \rangle_H = \langle x, R_\lambda^* (\overline{\lambda} - A) y \rangle_H$$

which implies $R_{\lambda}^*(\overline{\lambda} - A)y = y$ for any $y \in H$. According to Satz 6.5.2, resolvents commute: $R_{\lambda}R_{\overline{\lambda}} = R_{\overline{\lambda}}R_{\lambda}$. This implies that R_{λ} is a normal operator: $R_{\lambda}R_{\lambda}^* = R_{\lambda}^*R_{\lambda}$.

(ii) Let $A, B \in L(H, H)$ be self-adjoint operators. By symmetry of the Hausdorff distance (in the sense that we can switch the roles of A and B), it suffices to prove

$$\sup_{\alpha \in \sigma(A)} \left(\inf_{\beta \in \sigma(B)} |\alpha - \beta| \right) \le ||A - B||_{L(H,H)}.$$

The claim follows, if we show the following implication for any $\alpha \in \mathbb{C}$:

$$\inf_{\beta \in \sigma(B)} |\alpha - \beta| > ||A - B||_{L(H,H)} \implies \alpha \in \rho(A) = \mathbb{C} \setminus \sigma(A).$$

Let $\alpha \in \mathbb{C}$ satisfy $\inf_{\beta \in \sigma(B)} |\alpha - \beta| > ||A - B||_{L(H,H)}$. Since the claim is trivial otherwise, we may assume $||A - B||_{L(H,H)} > 0$. Then, α has positive distance from $\sigma(B)$ which implies $\alpha \in \rho(B)$. Hence, $(\alpha - B)^{-1}$ is well-defined and we obtain

$$(\alpha - A) = (\alpha - B) - (A - B) = \left(1 - (A - B)(\alpha - B)^{-1}\right)(\alpha - B).$$
(*)

Since $(\alpha - B)$ is bijective, it remains to prove that $(1 - (A - B)(\alpha - B)^{-1})$ is bijective. This follows from Satz 2.2.7 if we prove $||(A - B)(\alpha - B)^{-1}||_{L(H,H)} < 1$.

Consider the rational function $f_{\alpha} \colon \mathbb{C} \to \mathbb{C}$ given by $f_{\alpha}(z) = (\alpha - z)^{-1}$. By assumption,

$$\frac{1}{\|A-B\|} > \frac{1}{\inf_{\beta \in \sigma(B)} |\alpha-\beta|} = \sup_{\beta \in \sigma(B)} \frac{1}{|\alpha-\beta|} = \sup\Big\{|x| \mid x \in f_{\alpha}(\sigma(B))\Big\}.$$

The spectral mapping theorem (Satz 6.5.4) implies $f_{\alpha}(\sigma(B)) = \sigma(f_{\alpha}(B))$. Thus,

$$\frac{1}{\|A-B\|} > \sup\left\{|x| \mid x \in \sigma(f_{\alpha}(B))\right\} = \sup_{x \in \sigma(f_{\alpha}(B))} |x| = r_{f_{\alpha}(B)}, \qquad (\dagger)$$

where we use the characterisation of spectral radius proven in Satz 6.5.3. Since $f_{\alpha}(B) = (\alpha - B)^{-1} =: R$ is a resolvent of B, it is a normal operator by (i). Hence,

$$\begin{aligned} \|Rx\|_{H}^{2} &= \langle Rx, Rx \rangle_{H} = \langle R^{*}Rx, x \rangle_{H} = \langle RR^{*}x, x \rangle_{H} = \langle R^{*}x, R^{*}x \rangle_{H} = \|R^{*}x\|_{H}^{2}, \\ \|Rx\|_{H}^{2} &= \langle R^{*}Rx, x \rangle_{H} \leq \|R^{*}Rx\|_{H}\|x\|_{H} \leq \|R^{*}R\|\|x\|_{H}^{2}, \\ \implies \|R\|^{2} \leq \|R^{*}R\| \leq \|R^{*}\|\|R\| = \|R\|^{2}, \\ \implies \|R\|^{2} = \|R^{*}R\| = \sup_{\|x\|_{H}=1} \|R^{*}(Rx)\|_{H} = \sup_{\|x\|_{H}=1} \|R(Rx)\|_{H} = \|R^{2}\|. \end{aligned}$$

(Note how the last identity makes use of the first identity.) Inductively, we obtain $||R||^{2^n} = ||R^{2^n}||$ for every $n \in \mathbb{N}$ which implies $r_{f_\alpha(B)} = r_R = ||R|| = ||(\alpha - B)^{-1}||$. Combined with estimate (†), we obtain $\frac{1}{||A-B||} > ||(\alpha - B)^{-1}||$, which yields

$$||(A - B)(\alpha - B)^{-1}|| \le ||A - B|| ||(\alpha - B)^{-1}|| < 1$$

and proves the claim. From (*) we then conclude $\alpha \in \rho(A)$.

Solution of 13.5:

(i) Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space and let $A \colon H \to H$ be linear, compact and self-adjoint and $A \neq 0$. Then there exist at most countably many eigenvalues $\lambda_k \in \mathbb{R} \setminus \{0\}$ which can accumulate only at $0 \in \mathbb{R}$ and corresponding eigenvectors $e_k \in H$ such that

$$\forall x \in H: \quad Ax = \sum_{k} \lambda_k \langle x, e_k \rangle e_k.$$

(ii) As an orthogonal complement of H'' the subspace $H' \subset H$ is closed and $(H', \langle \cdot, \cdot \rangle)$ is Hilbertean. Let $B_1 \subset H$ be the unit ball in H and $B'_1 \subset H'$ the unit ball in H'. Then, $\overline{A'B'_1} = \overline{AB'_1}$ is compact as closed subset of the compact set $\overline{AB_1}$. Therefore, $A' \colon H' \to H'$ and analogously $A'' \colon H'' \to H''$ are compact operators.

Moreover, we have

$$\forall x, y \in H' : \quad \langle A'x, y \rangle = \langle Ax, y \rangle = \langle x, Ay \rangle = \langle x, A'y \rangle$$

Hence, $A': H' \to H'$ is symmetric and hence self-adjoint being defined on all of H'. Self-adjointness of $A'': H'' \to H''$ follows analogously. (iii) The Courant–Fischer characterization of the k-th eigenvalue λ_k of A is

$$\lambda_k = \sup_{\substack{M \subset H, \\ \dim M = k}} \inf_{\substack{x \in M, \\ \|x\| = 1}} \langle x, Ax \rangle.$$

(iv) By the Courant–Fischer characterization

$$\lambda_1 = \sup_{\substack{x \in H, \\ \|x\|=1}} \langle x, Ax \rangle \ge \sup_{\substack{x' \in H', \\ \|x'\|=1}} \langle x', Ax' \rangle = \sup_{\substack{x' \in H', \\ \|x'\|=1}} \langle x', A'x' \rangle = \lambda_1'.$$

Analogously, $\lambda_1 \geq \lambda_1''$, hence we have $\lambda_1 \geq \max\{\lambda_1', \lambda_1''\}$.

If $e_1 = e'_1 + e''_1 \in H' \oplus H''$ is an eigenvector of A relative to its first eigenvalue $\lambda_1 > 0$, then

$$\begin{aligned} A'e'_1 + A''e''_1 &= Ae_1 = \lambda_1 e'_1 + \lambda_1 e''_1 \\ \implies \begin{cases} \langle e'_1, A'e'_1 \rangle = \lambda_1 \langle e'_1, e'_1 \rangle \\ \langle e''_1, A''e''_1 \rangle = \lambda_1 \langle e''_1, e''_1 \rangle \end{cases} \end{aligned}$$

If $e'_1 \neq 0$, then $e'_1/||e'_1||$ is an eigenvector with eingevalue λ_1 and we obtain $\lambda'_1 \geq \lambda_1$. Analogously, if $e''_1 \neq 0$, then $e''_1/||e''_1||$ is an eigenvector with eingevalue λ_1 and we obtain $\lambda''_1 \geq \lambda_1$. Since $e_1 \neq 0$, one of these two cases must be true, and we conclude $\lambda_1 = \max{\lambda_1, \lambda_2}$.

Solution of 13.6: Let $A: D_A \subset H \to H$ and $B: D_B \subset H \to H$ be densely defined, symmetric linear operators on the Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$ such that $A(D_A) \subset D_B$ and $B(D_B) \subset D_A$.

(i) Let $x \in D_{[A,B]} := D_A \cap D_B$. Then, applying the Cauchy–Schwarz inequality,

$$\begin{aligned} \left| \langle x, [A, B] x \rangle_H \right| &\leq \left| \langle x, A(Bx) \rangle_H \right| + \left| \langle x, B(Ax) \rangle_H \right| = \left| \langle Ax, Bx \rangle_H \right| + \left| \langle Bx, Ax \rangle_H \right| \\ &\leq 2 \|Ax\|_H \|Bx\|_H. \end{aligned}$$

(ii) Since A is a symmetric operator, $\langle x, Ax \rangle_H$ is real for any $x \in D_A \subset D_{A^*}$. Indeed,

$$\langle x, Ax \rangle_H = \langle A^*x, x \rangle_H = \langle Ax, x \rangle_H = \overline{\langle x, Ax \rangle}_H.$$

Moreover, for $x \in D_A$ with $||x||_H = 1$, we have

$$\langle x, Ax \rangle_H^2 \le \|x\|_H^2 \|Ax\|_H^2 = \langle Ax, Ax \rangle_H$$

Therefore,

$$\mathbb{R} \ni \varsigma(A, x) := \sqrt{\langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2}.$$

For any $\lambda, \mu \in \mathbb{R}$, the commutators [A, B] and $[A - \lambda, B - \mu]$ agree:

$$[A - \lambda, B - \mu] = (A - \lambda)(B - \mu) - (B - \mu)(A - \lambda)$$

= $AB - \mu A - \lambda B + \lambda \mu - BA + \lambda B + \mu A - \lambda \mu = [A, B].$

Since A is symmetric and $\lambda \in \mathbb{R}$, the operator $\tilde{A} = A - \lambda$ is also symmetric on $D_{\tilde{A}} = D_A$. Moreover, for any $x \in D_A$,

$$\begin{split} \|\tilde{A}x\|_{H}^{2} &= \langle \tilde{A}x, \tilde{A}x \rangle_{H} = \langle Ax - \lambda x, Ax - \lambda x \rangle_{H} \\ &= \langle Ax, Ax \rangle_{H} - \lambda \langle x, Ax \rangle_{H} - \lambda \langle Ax, x \rangle_{H} + \lambda^{2} \langle x, x \rangle_{H} \\ &= \langle Ax, Ax \rangle_{H} - 2\lambda \langle x, Ax \rangle_{H} + \lambda^{2} \langle x, x \rangle_{H}. \end{split}$$

We observe that if we choose $\lambda = \langle x, Ax \rangle_H \in \mathbb{R}$ and if $||x||_H = 1$, then

$$\|\tilde{A}x\|_{H}^{2} = \langle Ax, Ax \rangle_{H} - \langle x, Ax \rangle_{H}^{2} = \varsigma(A, x)^{2}.$$

Now, let $x \in D_{[A,B]} := D_A \cap D_B$ with $||x||_H = 1$ be arbitrary. Since the operators $\tilde{A} := A - \langle x, Ax \rangle_H$ and $\tilde{B} := B - \langle x, Bx \rangle_H$ are symmetric, part (i) applies and yields

$$\left|\langle x, [A, B]x \rangle_H\right| = \left|\langle x, [\tilde{A}, \tilde{B}]x \rangle_H\right| \le 2\|\tilde{A}x\|_H\|\tilde{B}x\|_H = 2\varsigma(A, x)\varsigma(B, x).$$

(iii) Suppose, $B: H \to H$ with finite operator norm and $A: D_A \subset H \to H$ satisfy

$$[A,B] = i \operatorname{id}_{D_{[A,B]}}.$$

By assumption, $D_{[A,B]} = D_A \cap H = D_A$ and $B(D_A) \subset D_A$. In particular, for any $n \in \mathbb{N}$ the inclusion $B^n(D_A) \subset D_A$ is satisfied, which is necessary to define $[A, B^n]$. We prove $[A, B^n] = niB^{n-1}$ by induction. For n = 1, the claim holds by assumption. Suppose, it is true for some $n \in \mathbb{N}$. Then

$$[A, B^{n+1}] = AB^{n+1} - B^{n+1}A = (AB^n - B^nA + B^nA)B - B^{n+1}A$$
$$= ([A, B^n] + B^nA)B - B^{n+1}A = niB^{n-1}B + B^nAB - B^{n+1}A$$
$$= niB^n + B^n[A, B] = niB^n + iB^n = (n+1)iB^n.$$

A consequence is that B cannot be nilpotent: if $B^n = 0$ for some $n \in \mathbb{N}$, then $B^{n-1} = \frac{1}{ni}[A, B^n] = 0$ which iterates to B = 0 in contradiction to $[A, B] \neq 0$. Suppose, A has finite operator norm ||A||. Then,

$$n||B^{n-1}|| = ||[A, B^n]|| \le ||AB^n|| + ||B^nA|| \le 2||A|| ||B^{n-1}|||B||.$$

Since $||B^{n-1}|| \neq 0$, we obtain $2||A|| \geq \frac{n}{||B||}$ which contradicts $n \in \mathbb{N}$ being arbitrary.

(iv) If $f \in C^1([0,1]; \mathbb{C})$, then f' is bounded and in particular $f' \in L^2([0,1]; \mathbb{C})$. The map $[0,1] \ni s \mapsto s$ is also bounded. Therefore, the linear operators

$$P: C_0^1([0,1]; \mathbb{C}) \to L^2([0,1]; \mathbb{C}), \qquad Q: L^2([0,1]; \mathbb{C}) \to L^2([0,1]; \mathbb{C}) \\ f(s) \mapsto if'(s) \qquad f(s) \mapsto sf(s)$$

are indeed well-defined. They are also symmetric. For Q this follows trivially from $s \in [0,1] \subset \mathbb{R}$. Given any $f, g \in D_P := C_0^1([0,1];\mathbb{C})$, we have

$$\langle Pf,g\rangle_{L^2} = \int_0^1 if'(s)\overline{g}(s)\,\mathrm{d}s = -\int_0^1 if(s)\overline{g}'(s)\,\mathrm{d}s = \int_0^1 f(s)\overline{ig'(s)}\,\mathrm{d}s = \langle f,Pg\rangle_{L^2}.$$

When integrating by parts, the boundary terms vanish due to f(0) = 0 = f(1). Hence, $P: C_0^1([0,1]; \mathbb{C}) \to L^2([0,1]; \mathbb{C})$ is symmetric (but *not* self-adjoint! see Beispiel 6.6.1).

Next, we verify that the commutator [P, Q] is well-defined. Since $D_Q = L^2([0, 1]; \mathbb{C})$ is the whole space, the only thing to check is that $Qf: s \mapsto sf(s)$ is in $D_P = C_0^1([0, 1]; \mathbb{C})$ whenever $f \in D_{[P,Q]} = C_0^1([0, 1]; \mathbb{C})$. But this follows trivially from the product rule. Moreover,

$$([P,Q]f)(s) = (P(Qf))(s) - (Q(Pf))(s) = if(s) + isf'(s) - sif'(s) = if(s)$$

for almost every $s \in [0, 1]$ which proves that (P, Q) is a Heisenberg pair. Finally, by part (ii), we have

$$\forall f \in C_0^1, \ \|f\|_{L^2} = 1: \quad \varsigma(P, f) \,\varsigma(Q, f) \ge \frac{1}{2} \Big| \langle f, [P, Q] f \rangle_{L^2} \Big| = \frac{1}{2} \Big| \langle f, if \rangle_{L^2} \Big| = \frac{1}{2}.$$