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Definition 0.1. Let X be a vector space over a field K. An algebraic basis for X is a subset
E ⊂ X such that every x ∈ X is uniquely given as finite linear combination of elements in
E (with coefficients in K).

The aim of this short note is to give a proof of the following basic assertion:

Theorem 0.2. Let (X, ‖·‖) be a complete normed space, i.e. a Banach space. Any countable
algebraic basis for X is actually finite (hence X has finite dimension).

Remark 0.3. Here and throughout the course it is assumed (as it is customary) that normed
vector spaces are either vector spaces over R or C. This allows, in particular, to ‘rescale
vectors by their norm’.

Remark 0.4. We tacitly give for granted the (non-trivial) fact that any vector space over a
field K admits an algebraic basis: this follows via an argument that is similar in spirit to the
one you have seen in earlier courses for the finite-dimensional case, but does require Zorn’s
Lemma (or, equivalently, the axiom of choice). The moral of the previous theorem is that
any infinite-dimensional Banach space only admits uncountable algebraic bases. This is one
of the reasons (yet not the only one) why the notion of algebraic basis is not really that useful
in Functional Analysis.

Proof. Let E be a countable basis of X, which we can enumerate as {e1, e2, . . .}. (Of course,
we convene that, if the basis is finite, then we stop enumerating after finitely many steps).
For n ∈ N∗ = N \ {0} we define the linear subspaces An = span{e1, . . . , en} ⊂ X.

First of all, observe that by the assumption that E is an algebraic basis of X we trivially
have that

X =
⋃
n∈N∗

An.

Then we proceed with two claims:

Claim 1: as finite dimensional subspace, An is closed.

Indeed, we proved that any two norms on a finite-dimensional vector space are always
equivalent, so in particular we can consider on An the norm ‖ · ‖ obtained by restriction of
the ambient norm on X, and the Euclidean norm defined by letting

‖
n∑

i=1

λiei‖′ =

√√√√ n∑
i=1

|λi|2.
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We then showed (cf. e.g. Exercise 1.1) that there exists a positive constant C > 0 such that

C−1‖x‖′ ≤ ‖x‖ ≤ C‖x‖′, ∀x ∈ An.

This implies at once that a sequence is Cauchy (respectively: convergent) in (An, ‖ ·‖) if and
only if it is Cauchy (respectively: convergent) in (An, ‖ · ‖′).

But, by completeness of Euclidean Rn we know that (An, ‖ · ‖′) is complete, and so (by
virtue of the previous remark) we conclude that (An, ‖ · ‖) is also complete. Lastly, recall
that a subspace of a complete metric space is complete if and only if it is closed, so An ⊂ X
is closed, like we had claimed.

Claim 2: As a subspace of X, we have that An has empty interior unless X is finite-
dimensional.

Suppose, on the contrary, that there exist x ∈ An and ε > 0 such that Bε(x) ⊂ An.
Since An is a linear subspace, we may subtract x ∈ An from the elements in Bε(x) to obtain
Bε(0) ⊂ An. For the same reason,

An ⊃ {λy : λ > 0, y ∈ Bε(x)} = X.

This however implies dimX ≤ n which in turn forces X to have finite dimension. Thus, if
X is infinite-dimensional then (An)

◦ = A◦n = ∅ which means that An is nowhere dense.
If we now combine together the two claims above and Baire’s theorem we immediately

reach a contradiction unless the vector space X has finite dimension, which is precisely what
we had to prove.

�

Remark 0.5. Let X be the space of polynomials p : [0, 1]→ R with real coefficients endowed
with the norm ‖ · ‖C0([0,1]). Let fn : [0, 1] → R be given by the monomial fn(x) = xn. Then,
{fn : n ∈ N} is a countable algebraic basis for X. Hence, according to the theorem above, the
space (X, ‖ · ‖C0([0,1])) must be incomplete. Bonus question: can you characterise the metric
completion of X? (Equivalently: can you determine the closure of X inside C0([0, 1])?)
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