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ALESSANDRO CARLOTTO

This informal note briefly discusses the problem of defining the spectrum of a linear op-
erator acting on a real Banach space, and the construction of a spectral theory over R given
the (well-known) spectral theory over C.

1. The conceptual path

Let (X, ‖ · ‖X) be a Banach space over the real field R and let A : DA ⊂ X → X be
R-linear, where DA is as usual a real subspace, which we shall assume to be dense in X. We
would like to define the spectrum of A and see to what extent the theory we have developed
over the complex field C can be recovered in this case (which is very important in several
applications).

At the abstract level, one can take two different approaches.

Approach 1: complexification.

Given X as above, we define its complexification as the tensor product XC := X ⊗R C
(where C is regarded as a two-dimensional vector space over R, in the standard sense).
There is then a standard identification: XC ' X2 where the action of complex scalars on C
is defined as follows:

(α + iβ)(x1, x2) = (αx1 − βx2, βx1 + αx2).

In practice the couple (x1, x2) stands for the complex vector x1+ix2 and the operation above
is defined consistently with this idea.

Remark 1.1. In case X is a space of R-valued functions, then XC has a particularly simple
description. For instance Lp(Ω;R)C ≡ Lp(Ω;C), and analogously for space of continuous,
differentiable functions etc. . .

At that stage, one considers the complexification of the subspace DA (denoted by (DA)C)
and the complexified extension of A (denoted by AC) defined by componentwise action i. e.

AC : (DA)C ⊂ XC → XC, AC(x1, x2) = (Ax1, Ax2).

It is readily checked that AC is densely defined and C-linear. Hence, we can define its spec-
trum σ(AC), its resolvent ρ(AC) and the three parts of the spectrum σp(AC), σc(AC), σr(AC).
At that stage, one can then consider the real part of the spectrum (σ(AC)∩R), of the resol-
vent ρ(AC)∩R and of the components of the spectrum σp(AC)∩R, σc(AC)∩R, σr(AC)∩R.

This approach is conceptually very neat and allows exploiting all tools we have developed
over the algebraically closed field C (for instance: the fundamental characterization of the
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spectral radius rAC = limn→∞ ‖An
C‖1/n), but a priori has the disadvantage of giving some

unnatural definitions. For instance, notice that

σp(AC) ∩ R := {λ ∈ R : (λ− AC) : (DA)C ⊂ XC → XC is not injective}

so a priori we are considering here complex eigenvectors/eigenspaces, which are not really
objects that are associated to A, but solely to AC.

Approach 2: purely real theory.

Alternatively, one can take a totally different approach and formally recycle over R the
definitions given in the complex case. So, one shall define:

Definition 1.2. Let (X, ‖ · ‖X) be a Banach space over the real field R and let A : DA ⊂
X → X be a densely defined R-linear map. Then we define the real resolvent of A as

ρ(R)(A) :=
{
λ ∈ R : (λ− A) : DA ⊂ X → X bijective, ∃ (λ− A)−1 ∈ L(X)

}
and the real spectrum of A as

σ(R)(A) := R \ ρ(R)(A).

The spectrum is partitioned as follows:

σ(R)
p (A) := {λ ∈ R : (λ− A) : DA ⊂ X → X not injective} ;

σ(R)
c (A) := {λ ∈ R : (λ− A) : DA ⊂ X → X injective, with dense range} ;

and
σ(R)
r (A) := σ(R)(A) \ (σ(R)

p (A) ∪ σ(R)
c (A)).

Now, observe that the elements of σ(R)
p (A) can be legitimately called eigenvalues of A. This

theory is the natural analogue of the spectral theory for finite-dimensional vector spaces over
R.

The connection between the two perspectives is given by the following theorem, whose
(very simple!) proof is left as an exercise.

Theorem 1.3. Let (X, ‖ · ‖X) be a Banach space over the real field R and let A : DA ⊂
X → X be a densely defined R-linear map. Then the following equalities hold true:

σ(R)(A) = σ(AC) ∩ R, ρ(R)(A) = ρ(AC) ∩ R

as well as 
σ
(R)
p (A) := σp(AC) ∩ R
σ
(R)
c (A) := σc(AC) ∩ R
σ
(R)
r (A) := σr(AC) ∩ R.

This fact allows to connect the two perspectives, and exploit in the real case all the tools
that have been developed in the complex context. In particular, let us explicitly state the
spectral theorem for bounded operators.
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Theorem 1.4. Let (H, (·, ·)H) be an infinite-dimensional Hilbert space over the real field R
and let T 6= 0 ∈ L(H) be symmetric (equivalently: self-adjoint) and compact. Then there
exists a sequence (λk) of real eigenvalues (possibly with repetitions) such that λk → 0 as one
lets k →∞ and an associated orthonormal sequence of eigenfunctions (ek) with

H = ker(T )⊕ spanR {ek : k ∈ N}
and for any x ∈ H

Tx =
∑
k≥0

λk(x, ek)H ek.
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