
HILBERTIAN BASES AND APPLICATIONS

ALESSANDRO CARLOTTO

This informal note presents the notion of Hilbertian basis and discusses some related
topics, namely Bessel’s inequality, Parseval’s identity and the classification problem for real
Hilbert spaces.

1. The setup

Throughout this note, we let (H, 〈, 〉) denote a Hilbert space over R. The results we are
about to present can easily be extended to the case when the base field is C, with changes of
purely notational character. To avoid annoying (albeit trivial) subcases, we further convene
that H has infinite dimension. We shall start by recalling the following fundamental result
about the existence of a continuous projection operator onto any given closed subspace
K ⊂ H:

Theorem 1.1. Let (H, 〈, 〉) be a Hilbert space and let K ⊂ H be a closed linear subspace.
Then K has an orthogonal topological complement, namely

H = K ⊕⊥ K⊥

and there exist continuous, linear operators πK , πK⊥ ∈ L(H) such that the following asser-
tions hold true:

‖πK‖L(H) = 1, ‖πK⊥‖L(H) = 1;

[πK ]|K = idK , [πK⊥ ]|K⊥ = idK⊥ ;

π2
K = πK , π2

K⊥ = πK⊥ ;

id− πK = πK⊥ , id− πK⊥ = πK .

Here id : H → H denotes the identity map of H, ad similarly idK (resp. idK⊥) its restriction
to K (resp. K⊥).

We also need to recall the variational characterization of the projections:

Theorem 1.2. Let (H, 〈, 〉) be a Hilbert space and let K ⊂ H be a closed linear subspace.
Given x ∈ H, the following two assertions are equivalent for a vector y ∈ K:

i) d(x, y) = d(x,K) i. e. y realizes the distance of x from the subspace K;
ii) πK(x) = y i. e. y is the projection of x on the subspace K.

As a simple application, we can consider the important case when the subspace in question
is finite-dimensional.
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Corollary 1.3. Let (H, 〈, 〉) be a Hilbert space, let HN ⊂ H be a subspace such that
dimR(HN) = N and consider an orthonormal basis thereof {e1, . . . , eN}. Then for any
x ∈ H we have

πHN
(x) =

N∑
k=1

〈x, ek〉ek.

The proof of such assertion is straightforward and relies on checking that indeed the vector

x−
N∑
k=1

〈x, ek〉ek

is orthogonal to ei for each i = 1, . . . , N hence to HN .
We give the following preliminary definition:

Definition 1.4. Let (H, 〈, 〉) be a Hilbert space. For a set I, we shall say that (ei)i∈I is an
orthonormal family if

〈ei, ej〉 =

{
1 if i = j

0 if i 6= j

for any choice of i, j ∈ I. If I = N we shall call (ek)k∈N orthonormal system.

In general, working with respect to an orthonormal system is very useful whenever dealing
with Hilbert spaces. This fact is to a significant extent related to the following theorem.

Theorem 1.5. Let (H, 〈, 〉) be a Hilbert space and let (ek)k∈N be an orthonormal system
thereof. Then:

a) for any x ∈ H one has

(1.1)
∞∑
k=0

|〈x, ek〉|2 ≤ ‖x‖2;

b) for any x ∈ H the series

(1.2)
∞∑
k=0

〈x, ek〉ek

converges;
c) given x ∈ H the equality

∞∑
k=0

|〈x, ek〉|2 = ‖x‖2

holds if and only if

x =
∞∑
k=0

〈x, ek〉ek.

The series given in equation (1.2) is called Fourier series of x ∈ H, the inequality (1.1)
Bessel’s inequality and when equality holds we call it Parseval identity instead.
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Proof. For part a) set DN := spanR {e0, . . . , eN}, and observe that

‖x‖2 = ‖πDN
(x)‖2 + ‖πDN

⊥‖2

(which follows from Theorem 1.1) trivially implies

‖x‖2 ≥ ‖πDN
(x)‖2 =

N∑
k=0

|〈x, ek〉|2

via Corollary 1.3. But now such uniform bound holds true for any N ∈ N, thus the conclu-
sion.

For part b), let Sn :=
∑n

k=0〈x, ek〉ek thus for l2 ≥ l1 one has

‖Sl2 − Sl1‖2 = ‖
l2∑

k=l1+1

〈x, ek〉ek‖2 =

l2∑
k=l1+1

|〈x, ek〉|2

which implies that the sequence of partial sums is Cauchy in H, thus convergent.

For part c), it is sufficient to consider the identity

∥∥x− N∑
k=0

〈x, ek〉ek
∥∥2 = ‖x‖2 −

N∑
k=0

|〈x, ek〉|2

which comes just by expanding the square, and let N →∞. �

Based on the above discussion, we give the following:

Definition 1.6. Let (H, 〈, 〉) be a Hilbert space. We say that an orthonormal system (ek)k∈N
is an Hilbertian basis if

x =
∞∑
k=0

〈x, ek〉ek ∀x ∈ H.

Remark 1.7. Consider the space `2 of sequences having summable squares. Then we claim
that the orthonormal family given by the monomial sequences

ei = (0, . . . , 0, 1, 0, . . .)

(so having 1 only in the i-th slot) is indeed an Hilbertian basis. To this scope, based on the
criterion provided above (part c)) it is enough to observe that for any x := (xk)k∈N ∈ `2 one
has that

‖x‖2`2 =
∞∑
k=0

x2k =
∞∑
k=0

|〈x, ek〉|2

where the first equality is the very definition of `2-norm, and the second relies on the definition
of the basis we are working with. As we will see below `2 plays the role of canonical model
for all separable Hilbert spaces, in the same way Rn models any vector space V over R such
that dimR(V ) = n.
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2. Separability

The following proposition provides a simple criterion to determine whether a given Hilbert
space H does admit a complete orthonormal system, namely an Hilbertian basis.

Proposition 2.1. A Hilbert space (H, 〈, 〉) admits an Hilbertian basis if and only if its is
separable.

Proof. Assume first (H, 〈, 〉) admits an Hilbertian basis (ek)k∈N. Then the countable subset
D consisting of finite linear combinations, with coefficients in Q, of elements belonging to
such basis is dense in H. Indeed, given x ∈ H and ε > 0 one can find (thanks to part c) of
Theorem 1.5) an integer N = N(ε) such that

d2H
(
x,

N∑
k=0

〈x, ek〉ek
)

=
∞∑

k=N+1

|〈x, ek〉|2 <
ε

2

but then we can approximate each coefficient 〈x, ek〉 by means of qk ∈ Q in a way that

d2H(x, qkek) < ε

which implies our claim.
Conversely, let (xk)k∈N an enumeration of a countable dense subset ofH. Before proceeding

further, we need to make two preliminary operations. First, we can set v0 = x0 and then,
given {v0, v1, . . . , vn} and proceeding inductively, we let vn+1 = xk(n+1) where the positive
integer k(n+ 1) in the sequence n 7→ k(n) is defined by the requirement that

k(n+ 1) = min {p ∈ N : p > k(n), xp /∈ spanR {v0, v1, . . . , vn} } .
Notice that, if we let DN to be the linear span of {v0, v1, . . . , vN} and D∞ = ∪NDN we
have that D∞ is dense in H because (by construction) xk ∈ D∞ for all k ∈ N. As a second
step, we apply the Gram-Schmidt procedure to the sequence (vk)k∈N thereby obtaining an
orthonormal system (ek)k∈N: we claim that such system is in fact an Hilbertian basis for H.
Given any x ∈ H and N ∈ N, we let

dN = d(x,DN) = inf
y∈DN

‖x− y‖

so that by the density of D∞ ⊂ H we get at once that dN ↓ 0 as one lets N →∞. But then,
given ε > 0 we can find N = N(ε) such that dN < ε and then by Corollary 1.3 this precisely
means that

‖x−
N∑
k=0

〈x, ek〉ek‖ < ε.

By the arbitrariness of ε > 0 we conclude that x =
∑∞

k=0〈x, ek〉ek, which completes the
proof. �

Corollary 2.2. The space L2((−π, π);R) (and, similarly, the space L2((−π, π);C)) admits
an Hilbertian basis.

The problem, in applying the previous proposition, is that it does not really give a practical
criterion to verify whether a given orthonormal system is actually an Hilbertian basis. This
is an important problem in Real Analysis. We mention here a fundamental result, that is
frequently applied:
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Theorem 2.3. a. An Hilbertian basis for L2((−π, π);R) is given by the standard (real)
trigonometric system

1√
2π

;
1√
π

cos(kx) k ∈ N∗;
1√
π

sin(kx) k ∈ N∗.

b. An Hilbertian basis for L2((−, π, π);C) is given by the standard (complex) trigono-
metric system

1√
2π
eikx k ∈ Z.

For a (streamlined, very readable) proof of the former assertion, the reader may consult
e. g. [ADPM], pp. 75-79. The latter assertion then follows easily from the former by
considering the cases when f ∈ L2((−, π, π);C) is actually real-valued, and then the case
when if ∈ L2((−, π, π);C) is real-valued.

For L2((−, π, π);R), if we write (as it is customary) the Fourier series as

S(x) =
1

2
a0 +

∞∑
k=1

(ak cos(kx) + bk sin(kx))

for
ak =

1

π

∫ π

−π
f(y) cos(ky) dy k ∈ N, bk =

1

π

∫ π

−π
f(y) cos(ky) dy k ∈ N∗

then the Parseval identity reads

1

π

∫ π

−π
|f(x)|2 dx =

1

2
a20 +

∞∑
k=1

(a2k + b2k).

As an interesting special case, considering the Fourier series of the function f(x) = x one
can prove the well-known identity

∞∑
k=1

1

k2
=
π2

6
.

Similarly, in the complex case, if we write the Fourier series as

SC(x) =
∑
k∈Z

cke
ikx

for
ck =

1

2π

∫ π

−π
f(y)e−iky dy

then the Parseval identity reads
1

2π

∫ π

−π
|f(x)|2 dx =

∑
k∈Z

|ck|2.

Remark 2.4. It is important not to confuse the notion of Hilbertian basis with that of alge-
braic basis, which has rather limited relevance and utility in the analytical study of infinite-
dimensional vector spaces. To keep the two notions well-distinct, we remind the reader that
given a real vector space V it is possible to prove (which we did, using Baire’s Lemma) that
an algebraic basis for V has never countable cardinality (i.e. it has either finite cardinality
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or at least as large as that of R), while on the other hand for all separable Hilbert spaces an
Hilbertian basis is always countable.

Remark 2.5. It is obviously an interesting question whether there exist Hilbert spaces that
are not separable. The simplest such example, yet already a nontrivial one, can be constructed
as follows. Let H be the set of functions f : [0, 1] → R such that f(x) 6= 0 for at most
countably many x ∈ [0, 1] and such that

∑
x∈[0,1] |f(x)|2 < +∞. Endow this set with the

scalar product over R given by

〈f, g〉 =
∑
x∈[0,1]

f(x)g(x).

It is possible to show that this couple (H, 〈, 〉) is indeed a non-separable Hilbert space.

3. Isomorphic classification

Based on the remark above, we consider the problem of classifying Hilbert spaces up to
isometric isomorphism. Precisely, we mean the following.

Definition 3.1. Given Hilbert spaces (H1, 〈, 〉1) and (H2, 〈, 〉2) we shall say that a linear map
Ψ : H1 → H2 is an isometric isomorphism if it is a bijection and for any x1, z1 ∈ H1 one
has

〈x1, z1〉1 = 〈Ψ(x1),Ψ(z1)〉2.
We say that (H1, 〈, 〉1) and (H2, 〈, 〉2) are equivalent, and write (H1, 〈, 〉1) ' (H2, 〈, 〉2) if there
is an isometric isomorphism from the former space to the latter.

The previous definition is indeed well-posed, for it is easy to check that ' is an equivalence
relation.

We start by observing that, like in the finite-dimensional context, the cardinality of an
Hilbertian basis (that is to say, generalizing the one above: of an orthonormal family, whose
finite linear combinations are dense in the whole space in question) is indeed an invariant.

Definition 3.2. Let (H, 〈, 〉) be a Hilbert space. We say that an orthonormal family (ei)i∈I
is a generalized Hilbertian basis for (H, 〈, 〉) if{ ∑

J⊂I,Jfinite

xiei, xi ∈ R

}H

= H.

The following three theorems are stated here without proof, for which we refer the reader
for instance to [KG] part III, section 4.1.

Theorem 3.3. Any Hilbert space (H, 〈, 〉) admits a generalized Hilbertian basis B.

The statement above is in fact a rather standard application of Zorn’s Lemma.

Theorem 3.4. Let (H, 〈, 〉) be a Hilbert space and let B,B′ be two generalized Hilbertian
bases for (H, 〈, 〉). Then there is a bijection Ω : B → B′.

Definition 3.5. Let (H, 〈, 〉) be a Hilbert space. The cardinality of a basis (hence of any
basis) of (H, 〈, 〉) is called Hilbertian dimension of (H, 〈, 〉).
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That being said, one can show that the Hilbertian dimension (i. e. the cardinality of a
generalized basis) is indeed the only invariant that comes into play in the classification of
Hilbert spaces up to isometric isomorphism, as encoded in the following assertion.

Theorem 3.6. Two Hilbert spaces (H1, 〈, 〉1) and (H2, 〈, 〉2) are isometrically isomorphic if
and only if there exist generalized Hilbertian bases B1 of (H1, 〈, 〉1) and, respectively, B2 of
(H2, 〈, 〉2), having the same cardinality.

As a special case, this implies the aforementioned classification result:

Corollary 3.7. Any two separable Hilbert spaces are isometrically isomorphic, and each of
them is isometrically isomorphic to `2.
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