EQUIVALENT NOTIONS OF COMPACTNESS

GIADA FRANZ

Lemma 1. Let (X, d) be a metric space and assume that X is separable, i.e., it contains a countable dense subset. Prove that any open cover \mathcal{O} of X admits a countable subcover.

Proof. First observe that X admits a countable basis for the topology generated by the metric d. Indeed, denoting by D a countable dense subset of X, the countable set

$$
\mathcal{B}:=\left\{B(x, q): x \in D, q \in \mathbb{Q}_{>0}\right\}
$$

is a basis for the topology of metric space on X. Indeed consider any open set $U \subseteq X$ and any point $x_{0} \in U$. By definition of metric topology, there exists $y \in U$ and $r>0$ such that $x_{0} \in B(y, r) \subseteq U$. Then observe that $B\left(x_{0}, r^{\prime}\right) \subseteq B(y, r) \subseteq U$ with $r^{\prime}:=r-d\left(x_{0}, y\right)>0$, by the triangle inequality. Since D is dense, there exists $x \in D \cap B\left(x_{0}, r^{\prime} / 2\right)$, therefore we have that $x_{0} \in B\left(x, r^{\prime} / 2\right) \subseteq B\left(x_{0}, r^{\prime}\right) \subseteq U$, again by triangle inequality. Now take $q \in \mathbb{Q}_{>0}$ such that $d\left(x_{0}, x\right)<q<r^{\prime} / 2$ (which is possible since $d\left(x_{0}, x\right)<r^{\prime} / 2$), then $x_{0} \in B(x, q) \subseteq B\left(x, r^{\prime} / 2\right) \subseteq U$. Note that $B(x, q) \in \mathcal{B}$, thus we proved that \mathcal{B} is a basis for the topology.

Note. Here we proved that any separable metric space is second-countable. However, this is not true in general. In fact there exist separable first-countable topological spaces that are not second-countable.

Now we want to prove that, if a topological space X has a countable basis for its topology, then every open cover admits a countable subcover. Denote by $\mathcal{B}=\left\{B_{n}\right\}_{n \in \mathbb{N}}$ a countable basis of the topology and consider an open cover \mathcal{O}. Define $I \subset \mathbb{N}$ as the set of indices $n \in \mathbb{N}$ such that there exists $O_{n} \in \mathcal{O}$ containing B_{n}. Then define $\mathcal{O}^{\prime}:=\left\{O_{n}: n \in I\right\}$, where for every $n \in I$ we make a choice of $O_{n} \in \mathcal{O}$ such that $B_{n} \subseteq O_{n}$. We claim that \mathcal{O}^{\prime} is a countable subcover of \mathcal{O}. The fact that \mathcal{O}^{\prime} is countable is obvious, hence let us prove that it is a cover. Consider $x \in X$, then there exists $O \in \mathcal{O}$ such that $x \in O$. Since \mathcal{B} is a basis for the topology, we can pick $B_{n} \in \mathcal{B}$ such that $x \in B_{n} \subseteq O$. In particular $n \in I$, hence $x \in B_{n} \subseteq O_{n}$ for some $O_{n} \in \mathcal{O}^{\prime}$, which proves that \mathcal{O}^{\prime} is a cover.

Proposition 2. Given a metric space (X, d), the following conditions are equivalent:
(C1) The space X is compact (i.e., every open cover of X admits a finite subcover).
(C2) The space X is sequentially compact (i.e., every sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq X$ admits a converging subsequence).
(C3) The space X is complete (i.e., every Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to some $x \in X$) and totally bounded (i.e., for every $\varepsilon>0$ there exists a finite set of points $x_{1}, \ldots, x_{k} \in X$ such that $\left.X \subseteq \cup_{i=1}^{k} B\left(x_{i}, \varepsilon\right)\right)$.

Proof. We prove that (C1) is equivalent to (C2), which is in turn equivalent to (C3). " $(\mathrm{C} 1) \Longrightarrow(\mathrm{C} 2)$ ". Assume by contradiction that X is compact but not sequentially compact. In particular there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ without converging subsequences. Then define

$$
\mathcal{O}:=\left\{O \subseteq X: O \text { open, } O \text { contains a finite number of elements in }\left\{x_{n}\right\}_{n \in \mathbb{N}}\right\}
$$

Observe that \mathcal{O} is an open cover of X. Indeed, for every $x \in X$, there exists an open neighborhood O of x that does not contain elements of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ eventually in $n \in \mathbb{N}$ (otherwise it would exists a subsequence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to x). Hence, by compactness of X, there exists a finite subcover \mathcal{O}^{\prime} of \mathcal{O}. Since \mathcal{O}^{\prime} is a finite cover of X and $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is an infinite sequence, there exists $O^{\prime} \in \mathcal{O}^{\prime}$ that contains an infinite number of elements of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$. However, this contradicts the fact that $O^{\prime} \in \mathcal{O}^{\prime} \subseteq \mathcal{O}$.
" $(\mathrm{C} 2) \Longrightarrow(\mathrm{C} 1)$ ". Let us assume that X is sequentially compact, we want to prove that it is compact. We first show that X is separable. First observe that X is bounded, otherwise it is easy to construct a sequence without converging subsequences ("going to infinity"). We construct the following sequence: we fix some $x_{0} \in X$ and then we define x_{n+1} for $n \geq 0$ in such a way that

$$
\begin{equation*}
\min _{i=1, \ldots, n} d\left(x_{n+1}, x_{i}\right) \geq \frac{1}{2} \sup _{x \in X} \min _{i=1, \ldots, n} d\left(x, x_{i}\right) . \tag{1}
\end{equation*}
$$

Observe that the term on the right hand side is finite by boundedness of X, thus it is possible to find x_{n+1} as required. We want to show that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a dense subset of X. Since X is sequentially compact, $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ admits a converging subsequence $\left\{x_{n_{m}}\right\}_{m \in \mathbb{N}}$. This implies that $\min _{i=1, \ldots, n_{m}-1} d\left(x_{n_{m}}, x_{i}\right) \leq d\left(x_{n_{m}}, x_{n_{m-1}}\right)$ converges to 0 as $m \rightarrow \infty$. As a result $\sup _{x \in X} \min _{i=1, \ldots, n_{m}} d\left(x, x_{i}\right) \rightarrow 0$ as $m \rightarrow \infty$, by (1). However, from this it follows directly that

$$
\sup _{x \in X} \min _{i=1, \ldots, n} d\left(x, x_{i}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which proves that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a (countable) dense subset of X.
Now consider an open cover \mathcal{O} of X. Since X is separable, we can extract a countable subcover $\mathcal{O}^{\prime}=\left\{O_{k}\right\}_{k \in \mathbb{N}}$ of \mathcal{O} by the Lemma above. Assume by contradiction that \mathcal{O}^{\prime} does not admit any finite subcover, then $\cup_{k=1}^{n} O_{k} \neq X$ for any $n \in \mathbb{N}$. In particular there exists $x_{n} \in X \backslash \cup_{k=1}^{n} O_{k}$ for any $n \in \mathbb{N}$. Since X is sequentially compact, the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has a subsequence converging to some point $x \in X$. However observe that $x \in X \backslash \cup_{k=1}^{n} O_{k}$ for all $n \in \mathbb{N}$, since the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is eventually contained in $X \backslash \cup_{k=1}^{n} O_{k}$, which is closed. Therefore, $x \in X \backslash \cup_{n \in \mathbb{N}} O_{n}$, which is a contradiction since $X \backslash \cup_{n \in \mathbb{N}} O_{n}=\emptyset$.
" $(\mathrm{C} 2) \Longrightarrow(\mathrm{C} 3) "$. Let us assume that X is sequentially compact. Given a Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, there exists a subsequence converging to some $x \in X$. However, it is not difficult to check (do it!) that if a subsequence of a Cauchy sequence converges to some point $x \in X$, then the whole sequence converges to such a point. Therefore X is complete The proof that X is totally bounded is analogous to the proof X is separable in the previous implication (which is $(\mathrm{C} 2) \Longrightarrow(\mathrm{C} 1)$), hence we leave it for the reader.
" $(\mathrm{C} 3) \Longrightarrow(\mathrm{C} 2)$ ". Let us assume that X is complete and totally bounded and consider a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$. We want to prove that this sequence admits a converging subsequence. Since X is totally bounded, for every $m \in \mathbb{N}$ there exists a finite cover \mathcal{O}_{m} of metric balls of radius $1 / m$. Note that there exists a subsequence $\left\{x_{n}^{1}\right\}_{n \in \mathbb{N}}$ of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that all its elements are contained in the same $O_{1} \in \mathcal{O}_{1}$ (this follows from the fact that \mathcal{O}_{1} is a finite cover of X). Analogously, for every $m>1$, we can find a subsequence $\left\{x_{n}^{m}\right\}_{n \in \mathbb{N}}$ of $\left\{x_{n}^{m-1}\right\}_{n \in \mathbb{N}}$ such that all its elements are contained in the same $O_{m} \in \mathcal{O}_{m}$. Finally, with a diagonal argument, we consider the sequence $\left\{x_{k}^{k}\right\}_{k \in \mathbb{N}}$ (which is a subsequence of $\left\{x_{n}\right\}_{n \in \mathbb{N}}$). Observe that $\left\{x_{k}^{k}\right\}_{k \in \mathbb{N}}$ is eventually contained in $O_{m} \in \mathcal{O}_{m}$ for every $m \in \mathbb{N}$. Hence in particular $\left\{x_{k}^{k}\right\}_{k \in \mathbb{N}}$ is a Cauchy sequence, because O_{m} is a metric ball of radius $1 / m$. Therefore $\left\{x_{k}^{k}\right\}_{k \in \mathbb{N}}$
converges to some point $x \in X$ by completeness of X. This proves that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has a converging subsequence and thus that X is sequentially compact.
Corollary 3. A subset $C \subset \mathbb{R}^{n}$ is compact if and only if it is closed and bounded.
Proof. By the equivalence " $(\mathrm{C} 1) \Longleftrightarrow(\mathrm{C} 3)$ " in the previous proposition we have that $C \subset \mathbb{R}^{n}$ is compact if and only if it is complete and totally bounded. Then the result follows from the Claims 1 and 2 below.
Claim 1. Let (X, d) be a complete metric space. Then a subset $Y \subseteq X$ is closed if and only if it is complete. Observe that this applies in particular to $X=\mathbb{R}^{n}$ with the Euclidean distance.
Proof. First assume that $Y \subseteq X$ is closed and consider a Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq Y$, which converges to some point $x \in X$ by completeness of X. Hence, since Y is closed and $x_{n} \in Y$ for every $n \in \mathbb{N}, x$ is contained in Y too, which proves that Y is complete.

Viceversa, assume that $Y \subseteq X$ is complete and consider a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subseteq Y$ converging to some point $x \in X$. Then, for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $d\left(x_{n}, x\right) \leq \varepsilon / 2$ for every $n \geq N$. As a result we obtain that $d\left(x_{n}, x_{m}\right) \leq d\left(x_{n}, x\right)+d\left(x_{m}, x\right) \leq \varepsilon$ for every $n, m \geq N$, which proves that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence. Therefore this sequence converges to some point $y \in Y$ by completeness of Y. However, notice that y must coincide with x since the limit of a sequence in a metric space is unique. Hence we have shown that $x \in Y$, so Y is closed.
Claim 2. A subset of \mathbb{R}^{n} is totally bounded if and only if it is bounded.
Proof. Consider a subset Y of \mathbb{R}^{n}. Obviously if Y is totally bounded then it is bounded. Indeed, there exist $x_{1}, \ldots, x_{k} \subseteq Y$ such that $Y \subseteq \cup_{i=1}^{k} B\left(x_{i}, 1\right)$. Therefore for every $x, y \in Y$ we have that $|x-y| \leq 2+\max _{i, j=1 \ldots, k}\left|x_{i}-x_{j}\right|<\infty$.

For the other implication, first observe that a subset Y of a totally bounded space (X, d) is totally bounded. Indeed, given any $\varepsilon>0$, there exist $x_{1}, \ldots, x_{k} \in X$ such that $X \subseteq \cup_{i=1}^{k} B\left(x_{i}, \varepsilon / 2\right)$. Then, for every $i=1, \ldots, k$, choose $y_{i} \in Y \cap B\left(x_{i}, \varepsilon / 2\right)$ (if it exists, otherwise we just ignore the index). We claim that $Y \subseteq \cup_{i=1}^{k} B\left(y_{i}, \varepsilon\right)$. This follows from the fact that $B\left(x_{i}, \varepsilon / 2\right) \subseteq B\left(y_{i}, \varepsilon\right)$ (you can check it, using the triangle inequality).

Given this preliminary fact, we can now prove easily that if $Y \subseteq \mathbb{R}^{n}$ is bounded then it is totally bounded. Indeed, by boundedness of Y, there exists $R>0$ such that $Y \subseteq[-R, R]^{n}$ and we will now show that $[-R, R]^{n} \subseteq \mathbb{R}^{n}$ is totally bounded. Taken any $\varepsilon>0$, we cover $[-R, R]^{n}$ with a finite number of cubes C_{1}, \ldots, C_{k} with edges of length less that $2 \varepsilon / \sqrt{n}$ (this is easily obtained by covering the interval $[-R, R]$ with a finite number of intervals of length less than $2 \varepsilon / \sqrt{n}$ and then considering the "product cover"). Then denote by x_{1}, \ldots, x_{k} the center of the cubes and observe that $C_{i} \subseteq B\left(x_{i}, \varepsilon\right)$ for every $i=1, \ldots, k$, since the diameter of C_{i} is $\sqrt{n} \cdot 2 \varepsilon / \sqrt{n}$. Therefore $[-R, R]^{n} \subseteq \cup_{i=1}^{k} C_{i} \subseteq \cup_{i=1}^{k} B\left(x_{i}, \varepsilon\right)$, which proves the total boundedness of $[-R, R]^{n}$ by arbitrariness of $\varepsilon>0$.

Note that these two claims conclude the proof, since Claim 1 shows that $C \subset \mathbb{R}^{n}$ is closed if and only if it is complete and Claim 2 proves that $C \subset \mathbb{R}^{n}$ is bounded if and only if it is totally bounded. Hence $C \subset \mathbb{R}^{n}$ is compact if and only if it is complete and totally bounded, if and only if it is closed and bounded.

