EQUIVALENT NOTIONS OF COMPACTNESS
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Lemma 1. Let (X,d) be a metric space and assume that X is separable, i.e., it contains a
countable dense subset. Prove that any open cover O of X admits a countable subcover.

Proof. First observe that X admits a countable basis for the topology generated by the metric
d. Indeed, denoting by D a countable dense subset of X, the countable set

B:={B(z,q) : z € D,q € Qx¢}

is a basis for the topology of metric space on X. Indeed consider any open set U C X and
any point xy € U. By definition of metric topology, there exists y € U and r > 0 such that
xg € B(y,r) C U. Then observe that B(xzq,7r") C B(y,r) C U with r' := r — d(xo,y) > 0,
by the triangle inequality. Since D is dense, there exists z € D N B(x,7’/2), therefore
we have that zo € B(x,r'/2) C B(zg,7’) C U, again by triangle inequality. Now take
q € Qs¢ such that d(zg,x) < q < r’'/2 (which is possible since d(zg,z) < 7'/2), then
xg € B(z,q) C B(z,7"/2) C U. Note that B(z,q) € B, thus we proved that B is a basis for
the topology.

Note. Here we proved that any separable metric space is second-countable. However, this is
not true in general. In fact there exist separable first-countable topological spaces that are not
second-countable.

Now we want to prove that, if a topological space X has a countable basis for its topology,
then every open cover admits a countable subcover. Denote by B = { B, },en a countable
basis of the topology and consider an open cover O. Define I C N as the set of indices n € N
such that there exists O,, € O containing B,. Then define O’ := {O,, : n € I}, where for
every n € I we make a choice of O, € O such that B, C O,,. We claim that O is a countable
subcover of @. The fact that ' is countable is obvious, hence let us prove that it is a cover.
Consider x € X, then there exists O € O such that € O. Since B is a basis for the topology,
we can pick B,, € B such that x € B,, C O. In particular n € I, hence x € B,, C O,, for some
O,, € O, which proves that O’ is a cover. O

Proposition 2. Given a metric space (X,d), the following conditions are equivalent:

(C1) The space X is compact (i.e., every open cover of X admits a finite subcover).

(C2) The space X 1is sequentially compact (i.e., every sequence {x,}nen C X admits a
converging subsequence).

(C3) The space X is complete (i.e., every Cauchy sequence {x,}nen converges to some
x € X ) and totally bounded (i.e., for every e > 0 there exists a finite set of points
x1,..., 7, € X such that X C UY_ B(xy,¢)).

Proof. We prove that (C1) is equivalent to (C2), which is in turn equivalent to (C3).
“(C1) = (C2)”. Assume by contradiction that X is compact but not sequentially compact.
In particular there exists a sequence {z, },en Without converging subsequences. Then define

O :={0 C X : O open, O contains a finite number of elements in {x, }nen}-
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Observe that O is an open cover of X. Indeed, for every x € X, there exists an open
neighborhood O of z that does not contain elements of {z,},en eventually in n € N
(otherwise it would exists a subsequence of {x, },en converging to z). Hence, by compactness
of X, there exists a finite subcover O of O. Since ' is a finite cover of X and {z, }nen is
an infinite sequence, there exists O € O’ that contains an infinite number of elements of
{Zn}nen. However, this contradicts the fact that O" € 0" C O.

“(C2) = (C1)”. Let us assume that X is sequentially compact, we want to prove that it is
compact. We first show that X is separable. First observe that X is bounded, otherwise it
is easy to construct a sequence without converging subsequences (“going to infinity”). We
construct the following sequence: we fix some xg € X and then we define x,,.1 for n > 0 in
such a way that

(1) min d(x,41, ;) > 1S.up ‘min d(x,x;).
i=1,....n 2 zex ==1,...,n

Observe that the term on the right hand side is finite by boundedness of X, thus it is
possible to find x,,1 as required. We want to show that {z,},en is a dense subset of X.
Since X is sequentially compact, {x, },en admits a converging subsequence {z,, }men. This
implies that min,—; _,,.—1 d(%n,,, 2;) < d(xp,,, Ty, ,) converges to 0 as m — co. As a result
SUD,cx Mily—q . d(z,z;) = 0 as m — oo, by (1). However, from this it follows directly
that

sup min d(z,z;) -0 asn — oo,
zeXx =1,...,n

which proves that {z,},en is a (countable) dense subset of X.

Now consider an open cover O of X. Since X is separable, we can extract a countable
subcover O = {Oy }ren of O by the Lemma above. Assume by contradiction that O’ does
not admit any finite subcover, then U}_, Oy # X for any n € N. In particular there exists
x, € X \ UR_ O for any n € N. Since X is sequentially compact, the sequence {x, },en has
a subsequence converging to some point € X. However observe that x € X \ Up_, Oy, for
all n € N, since the sequence {x,}nen is eventually contained in X \ Up_, Oy, which is closed.
Therefore, 7 € X \ U,enO,,, which is a contradiction since X \ UpenO,, = 0.

“(C2) = (C3)”. Let us assume that X is sequentially compact. Given a Cauchy sequence
{Zn}nen, there exists a subsequence converging to some = € X. However, it is not difficult to
check (do it!) that if a subsequence of a Cauchy sequence converges to some point z € X
then the whole sequence converges to such a point. Therefore X is complete The proof that
X is totally bounded is analogous to the proof X is separable in the previous implication
(which is (C2) = (C1)), hence we leave it for the reader.

“(C3) = (C2)". Let us assume that X is complete and totally bounded and consider a
sequence {z, }nen. We want to prove that this sequence admits a converging subsequence.
Since X is totally bounded, for every m € N there exists a finite cover O,, of metric balls
of radius 1/m. Note that there exists a subsequence {x!},en of {x,},en such that all its
elements are contained in the same O; € O; (this follows from the fact that O; is a finite
cover of X). Analogously, for every m > 1, we can find a subsequence {z™},en of {2771}, cn
such that all its elements are contained in the same O,, € O,,. Finally, with a diagonal
argument, we consider the sequence {z%}ren (Which is a subsequence of {z, },en). Observe
that {2} }ren is eventually contained in O, € O,, for every m € N. Hence in particular
{a%}ren is a Cauchy sequence, because O, is a metric ball of radius 1/m. Therefore {z¥}ren
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converges to some point z € X by completeness of X. This proves that {z,},en has a
converging subsequence and thus that X is sequentially compact. 0

Corollary 3. A subset C' C R"™ is compact if and only if it is closed and bounded.

Proof. By the equivalence “(C1) <= (C3)” in the previous proposition we have that C' C R"
is compact if and only if it is complete and totally bounded. Then the result follows from the
Claims 1 and 2 below.

Claim 1. Let (X, d) be a complete metric space. Then a subset Y C X is closed if and only if
it is complete. Observe that this applies in particular to X = R" with the Euclidean distance.

Proof. First assume that Y C X is closed and consider a Cauchy sequence {z,}n,en C Y,
which converges to some point x € X by completeness of X. Hence, since Y is closed and
xn, €Y for every n € N, x is contained in Y too, which proves that Y is complete.
Viceversa, assume that Y C X is complete and consider a sequence {2, }nen C Y converging
to some point x € X. Then, for every € > 0 there exists N € N such that d(z,,z) < /2
for every n > N. As a result we obtain that d(x,,z,,) < d(z,,z) + d(z;,,z) < e for every
n,m > N, which proves that {z, } ey is a Cauchy sequence. Therefore this sequence converges
to some point y € Y by completeness of Y. However, notice that y must coincide with x
since the limit of a sequence in a metric space is unique. Hence we have shown that x € Y,
so Y is closed. 0

Claim 2. A subset of R" is totally bounded if and only if it is bounded.

Proof. Consider a subset Y of R™. Obviously if Y is totally bounded then it is bounded.
Indeed, there exist xy,...,zx C Y such that Y C UY_ B(x;,1). Therefore for every z,y € Y
we have that |z —y| < 2 +max; jo1_|z; — x;| < 0.

For the other implication, first observe that a subset Y of a totally bounded space
(X,d) is totally bounded. Indeed, given any € > 0, there exist x1,...,xx € X such that
X C U B(x;,¢/2). Then, for every i = 1,...,k, choose y; € Y N B(x;,¢/2) (if it exists,
otherwise we just ignore the index). We claim that Y C U%_, B(y;, €). This follows from the
fact that B(z;,e/2) C B(y;,€) (you can check it, using the triangle inequality).

Given this preliminary fact, we can now prove easily that if ¥ C R" is bounded then it is
totally bounded. Indeed, by boundedness of Y, there exists R > 0 such that Y C [-R, R]"
and we will now show that [—R, R]" C R" is totally bounded. Taken any ¢ > 0, we cover
[—R, R]™ with a finite number of cubes C1, ..., C) with edges of length less that 2¢/y/n (this
is easily obtained by covering the interval [— R, R] with a finite number of intervals of length
less than 2e/y/n and then considering the “product cover”). Then denote by x1,...,x) the

center of the cubes and observe that C; C B(x;,¢) for every i = 1,.. ., k, since the diameter
of C; is v/n - 2¢/y/n. Therefore [—R, R]" C U%_,C; C UY_ B(z;,¢), which proves the total
boundedness of [—R, R]" by arbitrariness of £ > 0. O

Note that these two claims conclude the proof, since Claim 1 shows that C' C R" is closed
if and only if it is complete and Claim 2 proves that C' C R" is bounded if and only if it is
totally bounded. Hence C' C R"™ is compact if and only if it is complete and totally bounded,
if and only if it is closed and bounded. 0J
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