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Lemma 1. Let (X, d) be a metric space and assume that X is separable, i.e., it contains a
countable dense subset. Prove that any open cover O of X admits a countable subcover.

Proof. First observe that X admits a countable basis for the topology generated by the metric
d. Indeed, denoting by D a countable dense subset of X, the countable set

B := {B(x, q) : x ∈ D, q ∈ Q>0}

is a basis for the topology of metric space on X. Indeed consider any open set U ⊆ X and
any point x0 ∈ U . By definition of metric topology, there exists y ∈ U and r > 0 such that
x0 ∈ B(y, r) ⊆ U . Then observe that B(x0, r′) ⊆ B(y, r) ⊆ U with r′ := r − d(x0, y) > 0,
by the triangle inequality. Since D is dense, there exists x ∈ D ∩ B(x0, r′/2), therefore
we have that x0 ∈ B(x, r′/2) ⊆ B(x0, r′) ⊆ U , again by triangle inequality. Now take
q ∈ Q>0 such that d(x0, x) < q < r′/2 (which is possible since d(x0, x) < r′/2), then
x0 ∈ B(x, q) ⊆ B(x, r′/2) ⊆ U . Note that B(x, q) ∈ B, thus we proved that B is a basis for
the topology.

Note. Here we proved that any separable metric space is second-countable. However, this is
not true in general. In fact there exist separable first-countable topological spaces that are not
second-countable.

Now we want to prove that, if a topological space X has a countable basis for its topology,
then every open cover admits a countable subcover. Denote by B = {Bn}n∈N a countable
basis of the topology and consider an open cover O. Define I ⊂ N as the set of indices n ∈ N
such that there exists On ∈ O containing Bn. Then define O′ := {On : n ∈ I}, where for
every n ∈ I we make a choice of On ∈ O such that Bn ⊆ On. We claim that O′ is a countable
subcover of O. The fact that O′ is countable is obvious, hence let us prove that it is a cover.
Consider x ∈ X, then there exists O ∈ O such that x ∈ O. Since B is a basis for the topology,
we can pick Bn ∈ B such that x ∈ Bn ⊆ O. In particular n ∈ I, hence x ∈ Bn ⊆ On for some
On ∈ O′, which proves that O′ is a cover. �

Proposition 2. Given a metric space (X, d), the following conditions are equivalent:
(C1) The space X is compact (i.e., every open cover of X admits a finite subcover).
(C2) The space X is sequentially compact (i.e., every sequence {xn}n∈N ⊆ X admits a

converging subsequence).
(C3) The space X is complete (i.e., every Cauchy sequence {xn}n∈N converges to some

x ∈ X) and totally bounded (i.e., for every ε > 0 there exists a finite set of points
x1, . . . , xk ∈ X such that X ⊆ ∪k

i=1B(xi, ε)).

Proof. We prove that (C1) is equivalent to (C2), which is in turn equivalent to (C3).
“(C1) =⇒ (C2)”. Assume by contradiction that X is compact but not sequentially compact.
In particular there exists a sequence {xn}n∈N without converging subsequences. Then define

O := {O ⊆ X : O open, O contains a finite number of elements in {xn}n∈N}.
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Observe that O is an open cover of X. Indeed, for every x ∈ X, there exists an open
neighborhood O of x that does not contain elements of {xn}n∈N eventually in n ∈ N
(otherwise it would exists a subsequence of {xn}n∈N converging to x). Hence, by compactness
of X, there exists a finite subcover O′ of O. Since O′ is a finite cover of X and {xn}n∈N is
an infinite sequence, there exists O′ ∈ O′ that contains an infinite number of elements of
{xn}n∈N. However, this contradicts the fact that O′ ∈ O′ ⊆ O.
“(C2) =⇒ (C1)”. Let us assume that X is sequentially compact, we want to prove that it is
compact. We first show that X is separable. First observe that X is bounded, otherwise it
is easy to construct a sequence without converging subsequences (“going to infinity”). We
construct the following sequence: we fix some x0 ∈ X and then we define xn+1 for n ≥ 0 in
such a way that

(1) min
i=1,...,n

d(xn+1, xi) ≥
1
2 sup

x∈X
min

i=1,...,n
d(x, xi).

Observe that the term on the right hand side is finite by boundedness of X, thus it is
possible to find xn+1 as required. We want to show that {xn}n∈N is a dense subset of X.
Since X is sequentially compact, {xn}n∈N admits a converging subsequence {xnm}m∈N. This
implies that mini=1,...,nm−1 d(xnm , xi) ≤ d(xnm , xnm−1) converges to 0 as m→∞. As a result
supx∈X mini=1,...,nm d(x, xi) → 0 as m → ∞, by (1). However, from this it follows directly
that

sup
x∈X

min
i=1,...,n

d(x, xi)→ 0 as n→∞,

which proves that {xn}n∈N is a (countable) dense subset of X.
Now consider an open cover O of X. Since X is separable, we can extract a countable

subcover O′ = {Ok}k∈N of O by the Lemma above. Assume by contradiction that O′ does
not admit any finite subcover, then ∪n

k=1Ok 6= X for any n ∈ N. In particular there exists
xn ∈ X \ ∪n

k=1Ok for any n ∈ N. Since X is sequentially compact, the sequence {xn}n∈N has
a subsequence converging to some point x ∈ X. However observe that x ∈ X \ ∪n

k=1Ok for
all n ∈ N, since the sequence {xn}n∈N is eventually contained in X \ ∪n

k=1Ok, which is closed.
Therefore, x ∈ X \ ∪n∈NOn, which is a contradiction since X \ ∪n∈NOn = ∅.
“(C2) =⇒ (C3)”. Let us assume that X is sequentially compact. Given a Cauchy sequence
{xn}n∈N, there exists a subsequence converging to some x ∈ X. However, it is not difficult to
check (do it!) that if a subsequence of a Cauchy sequence converges to some point x ∈ X,
then the whole sequence converges to such a point. Therefore X is complete The proof that
X is totally bounded is analogous to the proof X is separable in the previous implication
(which is (C2) =⇒ (C1)), hence we leave it for the reader.
“(C3) =⇒ (C2)”. Let us assume that X is complete and totally bounded and consider a
sequence {xn}n∈N. We want to prove that this sequence admits a converging subsequence.
Since X is totally bounded, for every m ∈ N there exists a finite cover Om of metric balls
of radius 1/m. Note that there exists a subsequence {x1

n}n∈N of {xn}n∈N such that all its
elements are contained in the same O1 ∈ O1 (this follows from the fact that O1 is a finite
cover of X). Analogously, for every m > 1, we can find a subsequence {xm

n }n∈N of {xm−1
n }n∈N

such that all its elements are contained in the same Om ∈ Om. Finally, with a diagonal
argument, we consider the sequence {xk

k}k∈N (which is a subsequence of {xn}n∈N). Observe
that {xk

k}k∈N is eventually contained in Om ∈ Om for every m ∈ N. Hence in particular
{xk

k}k∈N is a Cauchy sequence, because Om is a metric ball of radius 1/m. Therefore {xk
k}k∈N



EQUIVALENT NOTIONS OF COMPACTNESS 3

converges to some point x ∈ X by completeness of X. This proves that {xn}n∈N has a
converging subsequence and thus that X is sequentially compact. �

Corollary 3. A subset C ⊂ Rn is compact if and only if it is closed and bounded.
Proof. By the equivalence “(C1)⇐⇒ (C3)” in the previous proposition we have that C ⊂ Rn

is compact if and only if it is complete and totally bounded. Then the result follows from the
Claims 1 and 2 below.
Claim 1. Let (X, d) be a complete metric space. Then a subset Y ⊆ X is closed if and only if
it is complete. Observe that this applies in particular to X = Rn with the Euclidean distance.
Proof. First assume that Y ⊆ X is closed and consider a Cauchy sequence {xn}n∈N ⊆ Y ,
which converges to some point x ∈ X by completeness of X. Hence, since Y is closed and
xn ∈ Y for every n ∈ N, x is contained in Y too, which proves that Y is complete.

Viceversa, assume that Y ⊆ X is complete and consider a sequence {xn}n∈N ⊆ Y converging
to some point x ∈ X. Then, for every ε > 0 there exists N ∈ N such that d(xn, x) ≤ ε/2
for every n ≥ N . As a result we obtain that d(xn, xm) ≤ d(xn, x) + d(xm, x) ≤ ε for every
n, m ≥ N , which proves that {xn}n∈N is a Cauchy sequence. Therefore this sequence converges
to some point y ∈ Y by completeness of Y . However, notice that y must coincide with x
since the limit of a sequence in a metric space is unique. Hence we have shown that x ∈ Y ,
so Y is closed. �

Claim 2. A subset of Rn is totally bounded if and only if it is bounded.
Proof. Consider a subset Y of Rn. Obviously if Y is totally bounded then it is bounded.
Indeed, there exist x1, . . . , xk ⊆ Y such that Y ⊆ ∪k

i=1B(xi, 1). Therefore for every x, y ∈ Y
we have that |x− y| ≤ 2 + maxi,j=1...,k|xi − xj| <∞.

For the other implication, first observe that a subset Y of a totally bounded space
(X, d) is totally bounded. Indeed, given any ε > 0, there exist x1, . . . , xk ∈ X such that
X ⊆ ∪k

i=1B(xi, ε/2). Then, for every i = 1, . . . , k, choose yi ∈ Y ∩ B(xi, ε/2) (if it exists,
otherwise we just ignore the index). We claim that Y ⊆ ∪k

i=1B(yi, ε). This follows from the
fact that B(xi, ε/2) ⊆ B(yi, ε) (you can check it, using the triangle inequality).

Given this preliminary fact, we can now prove easily that if Y ⊆ Rn is bounded then it is
totally bounded. Indeed, by boundedness of Y , there exists R > 0 such that Y ⊆ [−R, R]n
and we will now show that [−R, R]n ⊆ Rn is totally bounded. Taken any ε > 0, we cover
[−R, R]n with a finite number of cubes C1, . . . , Ck with edges of length less that 2ε/

√
n (this

is easily obtained by covering the interval [−R, R] with a finite number of intervals of length
less than 2ε/

√
n and then considering the “product cover”). Then denote by x1, . . . , xk the

center of the cubes and observe that Ci ⊆ B(xi, ε) for every i = 1, . . . , k, since the diameter
of Ci is

√
n · 2ε/

√
n. Therefore [−R, R]n ⊆ ∪k

i=1Ci ⊆ ∪k
i=1B(xi, ε), which proves the total

boundedness of [−R, R]n by arbitrariness of ε > 0. �

Note that these two claims conclude the proof, since Claim 1 shows that C ⊂ Rn is closed
if and only if it is complete and Claim 2 proves that C ⊂ Rn is bounded if and only if it is
totally bounded. Hence C ⊂ Rn is compact if and only if it is complete and totally bounded,
if and only if it is closed and bounded. �
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