
WHAT IS FUNCTIONAL ANALYSIS?

ALESSANDRO CARLOTTO

This informal note serves as a general presentation for the course Functional Analysis.

1. Introduction

One of the most important concepts you have encountered in your studies so far is certainly
that of vector space: roughly speaking, this is a set V endowed with two operations

+ : V × V → V (v1, v2) 7→ v1 + v2

called sum of two vectors, and

· : K× V → V (λ, v) 7→ λ · v
called multiplication of a vector by a scalar in the base field K, that satisfy a list of
very reasonable axioms. Notice that is a purely algebraic notion (like those of group, ring,
field etc . . . ), and a priori no topology comes into play.

Now, a key notion in the study of vector spaces is that of basis. In your courses you
studied that {vi}i∈I is a basis for V if it is a linearly independent family which generates
any vector v ∈ V , in the sense that any given vector v can be uniquely expressed as a finite
linear combination

v = λ1vi1 + λ2vi2 + . . .+ λkvik
with coefficients λi1 , . . . , λik ∈ K. Now, the index set I parametrizing the basis can be either
finite or infinite and first-year linear algebra courses are indeed concerned with the study
of those vector spaces that do admit a basis consisting of finitely many elements. In that
case, one calls dimension of the vector space the number of elements in a basis, and it is
an important fact that this number is an invariant of the vector space (namely: it does not
depend on the choice of the basis in question). Vector spaces admitting a basis of finitely
many elements are then called finite-dimensional.

And here we come to the point of this course: not all vector spaces are finite-dimensional
and in fact many of the most interesting classes of vector spaces in mathematics do not fall
in such category. When a vector space V does not admit a basis of finitely many elements
we shall say that it is an infinite-dimensional vector space. A first example of an infinite
dimensional vector space you have already seen is given by the algebra of polynomials with
real coefficients, which is usually denoted by R[x]. How do you check such a claim? A
standard approach with these sorts of problems is to argue by contradiction. Let us then
assume that R[x] has a finite basis, and let n be its cardinality. Then (by first-year linear
algebra) any collection of n+ 1 elements in R[x] should be linearly dependent, meaning that
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it should satisfy a linear equation with coefficients in R. In particular, such an assertion
should hold true for the family {1, x, x2, . . . , xn} so one can find real numbers λ0, . . . , λn, not
all zero, such that

n∑
i=0

λix
i = 0,

identically for all x ∈ R. We know that this contradicts the fundamental theorem of algebra,
since any non-zero polynomial of degree n can have at most n distinct roots in C (hence in
R), but let us pretend to ignore this fact and provide a direct argument instead. Here it is.
If we evaluate this equation at x0 = 0 we get that λ0 = 0. We can now bring a morphism
into play and consider the linear map d/dx : R[x]→ R[x], the usual derivative operator. If
we differentiate the equation we find

n+1∑
i=1

iλix
i−1 = 0

and thus, evaluating again at x0 = 0 we find λ1 = 0. Proceeding by induction, after exactly
n steps we get to the contradictory conclusion

λ0 = λ1 = . . . λn = 0

and thus we have proven the claim that R[x] is not a finite-dimensional vector space.
But there are many more! In fact, you have already studied many examples of vector

spaces (over R) that do not admit a finite basis in the sense above. Essentially the same
argument as above allows to show that for any k ∈ N = {0, 1, 2, . . .} the space Ck([0, 1])
consisting of those (real-valued) functions defined on the compact interval [0, 1] that are
k-times differentiable, with continuous derivative, is itself infinite dimensional. Yet another
class of very simple examples is provided by Lp(0, 1) for any p ∈ [1,∞]. To clarify the point
and be more concrete, let us study the explicit case of L2(0, 1), the space of (real-valued)
square-summable functions defined over the interval (0, 1). Is it possible to find a finite,
but possibly large, number of functions ψ1, . . . , ψn whose collection is a basis for such vector
space? Again, let us argue by contradiction. Well, if that were the case, any set of n + 1
functions in L2(0, 1) should be linearly dependent, that is to say for every φ1, . . . , φn+1 one
could find real numbers λ1, . . . , λn+1 (not all zero!) such that the linear equation

n+1∑
i=1

λiφi = 0

is satisfied. So, as a special case, such an assertion should hold true for the family sin(kπx)
as we let k = 1, 2, . . . , n + 1. At this stage we proceed in the argument by bringing a new
structure into play, the standard scalar product 〈·, ·〉 : L2(0, 1)×L2(0, 1)→ R defined by

〈θ1, θ2〉 =

∫ 1

0

θ1(x)θ2(x) dx.

A simple calculation shows that any two functions in the family above are orthogonal, namely

〈sin(k1πx), sin(k2πx)〉 = 0 if k1 6= k2.
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Hence, if we had
n+1∑
i=1

λi sin(iπx) = 0

then also, for any fixed k = 1, 2, . . . , n+ 1

0 =
n+1∑
i=1

∫ 1

0

λi sin(iπx) sin(kπx) dx =
λk
2

so we conclude that λk = 0 for every k = 1, 2, . . . , n+ 1, which is a contradiction.

These examples being given, functional analysis is often defined as the branch of math-
ematics that is concerned with the study of infinite-dimensional vector spaces.
A less satisfactory, but perhaps more vivid definition, would be that functional analysis is
the study of those spaces whose points are functions in the sense exemplified by, say,
the function sin(πx) as a point in L2(0, 1). Obviously, when we say that we tacitly mean
that not only vector spaces come into play, but also linear maps among them (which do
provide further linear spaces, in fact). In the language of category theory, the study is not
only about objects (vector spaces) but also about associated morphisms (linear maps).

There are two remarks that I would like to add to this definition as it stands. The first is
that definition was essentially conceived and adopted around the middle of the last century,
in an era where a lot of emphasis in Analysis was put on linear structures, motivated by
the development of the theory of distributions by Laurent Schwartz on the one hand, and
by the strive for a general theory of linear partial differential equations by Lars Hörmander
on the other. Nowadays, what they used to call functional analysis is something that I
would rather call linear functional analysis, to distinguish it from the study of infinite-
dimensional manifolds (which is instead the study of those curved spaces, like Banach or
Hilbert manifolds, that are locally modelled by Banach or Hilbert spaces in the same way
that the two-dimensional sphere S2 is locally modelled on R2). In this sense, one may keep
in mind the naive proportion

(linear algebra) : (differential geometry)

= (linear functional analysis) : (nonlinear functional analysis).

The second comment is that a peculiar trait of functional analysis is the abstract perspective,
that is to say a constant attempt not to study functional spaces one at a time, but rather
to isolate certain structures/properties and to prove theorems that apply uniformly to all
spaces that do have those structures and/or that do satisfy those properties. Of course, this
requires some serious efforts when first learning the subject, but provides those who are not
afraid of the journey with tools that have proven to be incredibly powerful and effective
not only in shaping the landscape of contemporary mathematics, but also in a variety of
applications. Functional analysis provides the natural language of quantum mechanics,
hence it is a key component of the background of any theoretical physicist or chemist, but
it is also the natural framework for the study of partial differential equations, which
makes this subject essential in a variety of contexts ranging from fluid-dynamics to general
relativity.
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2. A roadmap

I will now try to describe the contents of the course, and to briefly outline what we will
cover during the first semester. Finite-dimensional vector spaces are always, and somehow
trivially (by their very definition), isomorphic to Rn (for some n ≥ 0) and as a such they
naturally inherit various sorts of structures. Let us recall that Rn naturally comes with its
Euclidean scalar product

x · y =
n∑

i=1

xiyi

and this induces (in turn, and as a logical cascade)
• a norm by means of the formula

‖x‖ :=
√
x · x

• a distance by means of the formula

d(x, y) = ‖x− y‖
• a topology by means of the formula

U ⊂ Rn is open⇔ ∀x ∈ U ∃ r ∈ R>0 such that Br(x) := {y ∈ Rn | d(x, y) < r} ⊂ U.

It is also worth recalling that in finite dimension all norms are equivalent, in the sense that
given any two ‖ · ‖, ‖ · ‖′ one can find a positive constant C > 0 such that

C−1‖x‖ ≤ ‖x‖′ ≤ C‖x‖ ∀x ∈ Rn

so that one might be tempted to say (in informal but effective terms) that only one normed
structure actually exists, namely that induced by the Euclidean scalar product. Notice
also that the equivalence of all norms implies at once the equivalence of any two distances
induced by norms and hence the fact that any topology induced by a norm is equivalent to
the Euclidean topology, in the sense that the two topologies share the same open sets.

On the contrary, infinite-dimensional vector spaces do not directly come with a scalar
product, in fact they do not a priori naturally come with any of the structures above.
Perhaps more significantly, in such context the structures above are very well-distinct in
the sense that, for instance, there are typically lots of norms that are not induced by inner
products and so on. As a result, when endowing a vector space V with one of the structures
above (scalar product, norm, distance, topology), we are truly looking at different classes of
vector spaces, the sole common requirement being completeness of the space in question,
which is necessary for the most basic operations in Analysis. For instance, we shall define a
Hilbert space (resp. a Banach space) to be a vector space with a scalar product (resp.
a norm), such that the associated topology is complete. Associated to such a hierarchy of
structures there is a natural chain of inclusions

{Hilbert spaces} ⊂ {Banach spaces}
⊂ {(complete) linear metric spaces} ⊂ {(complete) topological vector spaces} .

and one of the general scopes of functional analysis is to study the specific properties of any
of these classes of spaces. As a good, vague principle to keep in mind: the stronger the
structure, the richer the theory.
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A wild approach to the subject could be to divide the basic theorems in functional analysis
into two basic categories:

a) those asserting that for some of the classes above (say e. g. Banach spaces) and with
respect to a given property things work like in finite dimension, but perhaps with
much more effort;

b) those asserting that for some of the classes above (say e. g. Banach spaces) and with
respect to a given property things work very differently from the finite-dimensional
scenario.

An example from the first category is the study of duality for Hilbert spaces: the Riesz
representation theorem for Hilbert spaces, asserting that any continuous linear functional
equals the scalar product with a vector (so that a scalar product induces an isomorphim
V ' V ∗ between a space and its dual). This is a seemingly innocent, but in fact very
powerful tool in proving the existence of weak solutions for various classes of linear partial
differential equations, as we shall see.

An example from the second category is the study of compactness for Banach spaces: we
will see that the closed unit ball in a Banach space is compact (for the normed topology) if
and only if the space in question is finite-dimensional, with the dramatic implication that all
infinite-dimensional Banach spaces (like e. g. Lp(0, 1) for all p) have a closed unit ball that
is not compact. This turns out to be a very serious issue, which motivated the introduction
of key notions like those of weak (and weak*) topology.

Once these basic topological phenomena are understood, one can turn to what is probably
the single most important scope of functional analysis, which is the investigation of the
solvability of linear equations of the form

Tv = w

where T : V → W is a continuous linear map, acting between vector spaces V,W belonging to
the one of the classes described above. A good example to keep in mind, probably familiar to
most of you, would be the study of the Laplace equation with Dirichlet boundary conditions{

∆u = f on Ω

u = 0 on ∂Ω

for f ∈ L2(Ω) and Ω denotes an open (say, relatively compact) regular domain in Rn, like
the unit ball centered at the origin. Note that for n = 3 this is precisely the sort of equation
you need to solve to determine the gravitational (respectively: electromagnetic) potential
associated to a certain distribution of mass (respectively: charge) in an assigned physical
region Ω.

The first goal of our investigation will be to introduce a suitable functional framework for
the problem in question, which allows to pose the (unique) solvability of the equation above in
the equivalent terms of showing that the differential operator ∆ : H2(Ω) ∩H1

0 (Ω) → L2(Ω)
is a linear isomorphism. Very concretely, this amounts to defining the Sobolev spaces
Hk(Ω) and their subspaces Hk

0 (Ω), which offer a convenient way to encode the boundary
condition that u = 0 on ∂Ω. Once this abstract perspective is gained, our second scope
will be to develop those tools that are needed to check (with the least possible effort, and
in the greatest possible generality) that the mapping in question is indeed an isomorphism.
A very important result in the study of linear maps will be the spectral theorem, which
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precisely asserts that certain classes of linear operators (namely those that are compact
and self-adjoint) among Hilbert spaces can be diagonalized. Needless to say, this result
(and its very many extensions) play a crucial role in the foundations of modern physics, and
in fact in several other applications.

3. Some advice

In this final section, I would like to try to give you some advice aimed at making your
study of the topics we will cover effective and possibly pleasant. In this class you will come
in contact with some beautiful mathematics and the tools you will acquire will be a central
part of your scientific background. For many of you this will be the your first journey in
the landscape of twentieth century mathematics and you will face its most challenging sides
for the first time: probably you will find some of the theorems that we will see (and the
corresponding proofs!) quite abstract, but you should never feel discouraged as that is
the natural price to pay to get closer to the border of human knowledge.

In class. Coming to class might be very helpful for your success in understanding the
content of this course: we will do our very best in order to make your efforts valuable.
Unfortunately, the current pandemic forces us to adopt an hybrid system, where attendance
should be understood either in classical terms or by following the live-stream of the lectures
in alternating weeks. It is quite clear, I believe (and hope), that a system like the one above
requires, to be effective and meaningful, a high degree of self-discipline, so that ‘you don’t
lose the pace’ during those weeks where you cannot attend the lectures in presence; I am
obviously aware that a traditional course would have been better, but the option above is
the best I could actually obtain given the circumstances.

The lectures should guide you in getting some feeling and intuition for the topics we
will cover and, more practically, should guide your personal study: they will enable you to
understand what are the conceptual keys of each topic we will cover, and the points you
have to study most carefully. While in class (or watching the live-stream) you should try
to follow the lectures very carefully and take some notes. In this respect, everybody has
his/her own style and there is no general recipe that works for everyone. I suggest to avoid
just copying what the instructor writes on the screen, and let me give two main reasons for
this. First: often what the instructor says is more helpful than what he actually writes down
(at least in conveying ideas). Second: your work in class should be active and you should do
a sort of minimal (since it is necessarily real-time) re-elaboration of the material. Concretely:
write down concepts in your own words, add an extra picture, use different colours, make
an asterisk next to the point you do not understand. Another fundamental principle is: ask
questions! Do not be scared to stop the instructor when something is not clear, since often
your doubts are common to other students as well. Moreover, asking questions might also
help the instructor to select the points that should be reviewed and/or recalled in the course.

Your study. Making the most profit out of the lectures might help you a lot, but still
you will have to spend some time studying the material covered in class and doing your
homework. Notice that I did not simply say ‘doing your homework’ since I believe that any
effective study session should always begin with a brief review of the theory, both on your
notes and on the textbook. While studying try to have a critical/skeptical attitude: ask
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yourself simple questions (and try to answer them!), play with the tools you learn, draw
pictures to help your geometric intuition. When reading a proof check carefully the point(s)
where each assumption (hypothesis) is needed. Ideally (but this might be a bit hard at the
beginning) you should try to prove a theorem by yourself before actually studying it: even
if you do not succeed, your study will be much easier and faster (and you will remember the
proof much better).

My past experience here at ETH, and especially in teaching this course, forces me to stress
a seemingly obvious but fundamental principle:

you don’t learn how to play football by reading a book about football

which means: studying textbooks is good but (insofar math is concerned) it is only the
first step of the learning pyramid, and in order to acquire some scientific maturity you need
to get your hands dirty on examples, baby cases and work hard on the homework problems.
Sorry to be so frank, but this simple principle is often times the discriminating factor between
failure and success in this course.

Some of the problems you will do are quite standard, but others might require a bit of
creativity and some original idea. You should not be scared by these problems, instead you
should progressively acquire your skills in attacking them. Be at the same time flexible and
stubborn. Flexible in the sense that you should consider several different approaches before
committing to one. Stubborn in the sense that you should not give up if your approach does
not work immediately. Remember that if you can solve a problem immediately, then there
is not much gain out of that solution. You should never be frustrated: be optimistic and
enjoy the process of learning!

Writing a mathematical argument. A relevant fraction of the time you will spend for
this class will be in writing down solutions of problems. Try to take this seriously: working
in groups is great and may help in the learning process, yet you should then always write
down your own solution. Your solutions should be neat and complete. ‘Neat’ means well-
structured, not only aesthetically, but also logically. ‘Complete’ means that a solution is
not really about giving an answer (like: yes or 27, which can be derived by infinitely many
correct and infinitely many wrong procedures), but to produce an argument that is solid,
irreproachable and explains why one is led to a certain conclusion, and nowhere else.

Lastly, let me add here an aside remark. In the past I have also noticed a marginal
(but not negligible) tendency of copying solutions of the homework problems from earlier
incarnations of the course. This is not only useless (at all levels) but actually somewhat
counterproductive, since you end up wasting time you could rather devote to more effective
(and, in fact, more pleasant and creative) activities.

Time management. This is a very important point: studying mathematics is effective
only if it is a regular activity, by which I mean that you should build your own weekly
routine, like an avid athlete would do when preparing for a race. You should try to fix every
day the topics covered in class that day. Do not postpone! Studying right before the exam
is both (almost) useless and frustrating! With little but regular effort you will not only pass
this exam with an excellent grade, but also (and most importantly) you will learn something.
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Resources. First of all, I do encourage active and regular participation to our weekly
problem sessions: they will give you the opportunity to review the topics in smaller groups,
to discuss problems and see some of them solved in great detail.

Secondly, if you do not feel comfortable with some topic, or if you simply wish to discuss
something with us you should definitely come to office hours. When you do so, my advice
is to prepare quite precise questions so that you can come back home with precise answers.
Things have been arranged so to have two office hours every week of the semester: that
seems to be quite an experiment here at ETH, and my hope is that such a choice will turn
out to be successful. This will depend on each of you, on your attitude towards this course
and to your willingness to take on the challenge you have in front of you. As an alternative,
given the current circumstances, you may also wish to consider posting your questions on
the D-Math forum, where we will try to answer in a couple of days at most.

Besides the office hours offered by the assistants, and the virtual interactions on the forum,
please feel free to contact me whenever you want. You can either send me an email to arrange
a meeting or simply stop by. Whenever you see my door open, please do not hesitate: come
in and feel welcome, for you are the reason why I am here.

ETH - Department of Mathematics, ETH, Zürich, Switzerland
Email address: alessandro.carlotto@math.ethz.ch
URL: https://people.math.ethz.ch/~ac/
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