Coordinator Daniel Contreras

Probability Theory

Exercise Sheet 3

Exercise 3.1 Assume that $X_k = \frac{1}{k^2} + \frac{Z_k}{k^{\frac{1}{4}}}$, for $k \ge 1$, where Z_k are i.i.d random variables with $P[Z_k = 1] = P[Z_k = -1] = \frac{1}{4}$ and $P[Z_k = 0] = \frac{1}{2}$. Discuss the convergence of the random series $\sum_{k>1} X_k$.

Exercise 3.2 Let \mathcal{M} be the set of the real-valued random variables on the probability space (Ω, \mathcal{A}, P) . We define on \mathcal{M} an equivalence relation as follows:

$$X \sim Y \quad :\iff \quad P(X = Y) = 1$$

We denote by \mathcal{M}/\sim the set of equivalence classes in \mathcal{M} with respect to \sim and we denote by [X] the equivalence class of $X \in \mathcal{M}$.

(a) Show that

$$d: (\mathcal{M}/\sim) \times (\mathcal{M}/\sim) \to \mathbb{R}$$
$$([X], [Y]) \mapsto E[|X-Y| \land 1]$$

is a metric on \mathcal{M}/\sim .

(b) Let $(X_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{M} and let X be an element of \mathcal{M} . Show that $([X_n])_{n\in\mathbb{N}}$ converges to [X] with respect to the metric d if and only if $(X_n)_{n\in\mathbb{N}}$ converges to X in probability.

Exercise 3.3 Let X_i , $i \ge 1$, be identically distributed, integrable random variables and define $S_n = \sum_{i=1}^n X_i$ for each $n \ge 1$. Show that:

$$\lim_{M \to \infty} \sup_{n \ge 1} E\left\lfloor \frac{|S_n|}{n} \mathbb{1}_{\left\{\frac{|S_n|}{n} > M\right\}} \right\rfloor = 0.$$

Note: This family $\left\{\frac{|S_n|}{n}, n \ge 1\right\}$ is thus so-called "uniformly integrable". See (3.6.14) in the lecture notes. Thanks to Theorem 3.41 and the strong law of large numbers, one has that: if $X_i, i \ge 1$, are also pairwise independent, (in addition to being identically distributed as in the question), then $\frac{S_n}{n}$ converges P-a.s. and in L^1 towards $E[X_1]$ for $n \to \infty$.

Submission: until 12:00, Oct 13., through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.

Office hours: See the webpage for detailed information

- Präsenz (Group 3): Mon. and Thu., 12:00-13:00 in HG G32.6. with previous reservation.
- Probability Theory Assistants: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.

Exercise class: Online. In-person exercise classes need previous registration each week.