Coordinator Daniel Contreras

Probability Theory

Exercise Sheet 9

Exercise 9.1 Let $S, T : \Omega \to \mathbb{N} \cup \{\infty\}$ be \mathcal{F}_n -stopping times. Prove or provide a counter example disproving the following statements:

- (a) S-1 is a stopping time.
- (b) S+1 is a stopping time.
- (c) $S \wedge T$ is a stopping time.
- (d) $S \lor T$ is a stopping time.
- (e) S + T is a stopping time.

Exercise 9.2 Let (Ω, \mathcal{F}, P) be a probability space with a filtration $(\mathcal{F}_n)_{n\geq 0}$. Let $S \leq T$ be two bounded $(\mathcal{F}_n)_{n\geq 0}$ -stopping times and let $(X_n)_{n\geq 0}$ be an $(\mathcal{F}_n)_{n\geq 0}$ -submartingale. Show that

$$E[X_T | \mathcal{F}_S] \ge X_S, P\text{-a.s.}$$

(See (3.3.6) on p. 89 of the lecture notes for the definition of \mathcal{F}_{S} .)

Exercise 9.3 Let Y_n , $n \ge 0$ be i.i.d. with $P[Y_0 = 1] = p$ and $P[Y_0 = 0] = 1 - p$ for some $p \in (0, 1)$. Let $\mathcal{F}_n := \sigma(Y_0, \ldots, Y_n)$ for $n \ge 0$ and define

$$T := \inf\{n \ge 0 \mid Y_n = 1\}.$$

Determine the Doob decomposition of $X_n := 1_{\{T \le n\}}, n \ge 0$. **Hint:** First check that X_n is an \mathcal{F}_n -submartingale. Then try to use Proposition 3.19.

- Submission: until 12:00, Nov. 24, through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.
- **Office hours:** Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation. Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on: https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/