Coordinator Daniel Contreras

Probability Theory

Exercise Sheet 10

Exercise 10.1 Let $(X_n)_{n\geq 0}$ be a supermartingale with respect to the natural filtration $(\mathcal{F}_n)_{n\geq 0}$. Suppose $X_n \geq 0$ for all $n \geq 0$ and consider the \mathcal{F}_n -stopping time $T := \inf\{n \geq 0 : X_n = 0\}$. Show that $X_n = 0$ on the event $\{T < n\}$.

Exercise 10.2 Let $(X_i)_{i\geq 1}$ be i.i.d. random variables with mean 0 and variance $\sigma^2 < \infty$, defined in the probability space (Ω, \mathcal{A}, P) . Set $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$ and let T be a \mathcal{F}_n -stopping time with $E[T] < \infty$. Define $S_n := \sum_{i=1}^n X_i$ for $n \geq 1$ and $S_0 = 0$.

(a) Show, with the help of the Optional Stopping Theorem, that for all $n \ge 0$,

$$E[S^2_{T \wedge n}] = \sigma^2 E[T \wedge n]$$

- (b) Prove that $(S_{T \wedge n})_{n \geq 1}$ is a Cauchy sequence in $L^2(\Omega, \mathcal{A}, P)$.
- (c) Show that,

$$E[S_T^2] = \sigma^2 E[T].$$

Exercise 10.3 Consider a probability space (Ω, \mathcal{F}, P) equipped with a filtration $\{\mathcal{F}_n\}_{n\geq 0}$, and let X_n be an \mathcal{F}_n -martingale for which $|X_{n+1} - X_n| \leq M$ *P*-a.s. for some fixed $M < \infty$. Define the events C, D by

$$C := \{ \lim X_n \text{ exists and is finite} \}, D := \{ \limsup X_n = +\infty \text{ and } \liminf X_n = -\infty \}.$$

Show that $P[C \cup D] = 1$.

Hint: Show that $P[C^c \cap (\{\sup_{n \in \mathbb{N}} X_n < a\} \cup \{\inf_{n \in \mathbb{N}} X_n > -a\})] = 0$, for all a > 0, by considering the processes $\{X_{T_A \wedge n}\}_{n \geq 0}$, for $A = [a, \infty)$ and $A = (-\infty, -a]$, where $T_A = \inf\{n \geq 0 : X_n \in A\}$.

- Submission: until 12:00, Dec. 1, through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.
- **Office hours:** Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation. Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on: https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/