Coordinator Daniel Contreras

Probability Theory

Exercise Sheet 11

Exercise 11.1 (The generalized Borel-Cantelli lemma) Consider (Ω, \mathcal{F}, P) with filtration $\{\mathcal{F}_n\}_{n\geq 0}$, and let $A_n \in \mathcal{F}_n$, $n \geq 1$, be a sequence of events. Show that, up to a *P*-nullset,

$$\limsup_{n \to \infty} A_n = \{ \sum_{n \ge 1} P[A_n | \mathcal{F}_{n-1}] = \infty \}.$$

Hint: Use Exercise 10.3.

Exercise 11.2 Consider $Y, X_i, i \ge 1$, independent random variables with $Y \ge 0$, integer valued such that $E[Y] = \mu \in (1, \infty)$, and $X_i, i \ge 1$, i.i.d. Bernoulli random variables with $P[X_i = 0] = q \in (0, 1)$. If $S_m, m \ge 0$, denotes the partial sums of the X_i , let ν be the law of S_Y . Consider the Galton-Watson chain $Z_n, n \ge 0$ with offspring distribution ν (see p. 97 of the Lecture Notes).

- (a) For which values of q is the Galton-Watson chain subcritical?
- (b) If Y is constant and equal to 2, find

 $f(q) := P[Z_n > 0, \text{ for all } n \ge 0].$

Hint: See Lecture Notes p. 100.

Exercise 11.3 Let $(Y_n)_{n \in \mathbb{N}}$ be a sequence of independent, non-negative random variables with expectation 1. Consider the natural filtration $(\mathcal{F}_n)_{n \geq 0}$. We define

 $M_0 = 1, \quad M_n = Y_1 Y_2 \cdots Y_n, \text{ for } n \in \mathbb{N}.$

- (a) Prove that $(M_n)_{n \in \mathbb{N}}$ is a non-negative martingale with respect to the filtration $(\mathcal{F}_n)_{n \geq 0}$ and there exists a random variable M_{∞} , so that $M_n \to M_{\infty}$ a.s.
- (b) Let $a_n := E[\sqrt{Y_n}]$. Show that $a_n \in (0, 1]$.
- (c) Show that if $\prod_n a_n > 0$, it holds that $M_n \to M_\infty$ in L^1 and $E[M_\infty] = 1$. *Hint:* Let $\hat{Y}_n := \sqrt{Y_n}/a_n$ and $\hat{M}_n := \hat{Y}_1 \hat{Y}_2, \ldots, \hat{Y}_n$ for $n \ge 1$, $\hat{M}_0 = 1$. Note that $M_n \le \hat{M}_n^2$ for $n \in \mathbb{N}$. Then use (a) together with Doob's inequality to conclude the proof.
- (d) Show that if $\prod_n a_n = 0$, then $M_{\infty} = 0$ a.s.
- Submission: until 12:00, Dec. 8, through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation. Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

 $\label{eq:exercise sheets and further information are also available on: $https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/$$