Probability Theory

Exercise Sheet 12

Exercise 12.1 Let X_n , $n \ge 0$, be a uniformly integrable submartingale and N a stopping time.

- (a) Show that $\sup_n E[X_{N \wedge n}^+] \leq \sup_n E[X_n^+] < \infty$.
- (b) Show that X_N (where $X_N \mathbb{1}_{\{N=\infty\}} = \mathbb{1}_{\{N=\infty\}} \lim_{n \to \infty} X_n$) is integrable.
- (c) Show that $X_{N \wedge n}$, $n \ge 0$, is a uniformly integrable submartingale.
- (d) Show that $X_{N \wedge n}$ converges *P*-a.s. and in L^1 to X_N .

Exercise 12.2 Let $(X_n)_{n\geq 0}$ be a uniformly integrable family of random variables on (Ω, \mathcal{A}, P) .

(a) Assume that X_n converges to a random variable X in distribution. Show that

$$E[X_n] \xrightarrow{n \to \infty} E[X].$$

Remark: Compare to (3.6.18)–(3.6.20), p. 112 of the lecture notes.

(b) Assume that X_n converges to a random variable X in probability. Show that $X \in L^1$ and that X_n converges to X in L^1 .

Exercise 12.3 Azuma's inequality. Let $0 = X_0, \ldots, X_m$ be a martingale with $|X_{i+1} - X_i| \le 1$ for all $0 \le i < m$. Let $\lambda > 0$ be arbitrary.

- (a) Show that $E[e^{\alpha(X_i-X_{i-1})}|X_{i-1},X_{i-2},\ldots,X_0] \stackrel{(1)}{\leq} \cosh \alpha \stackrel{(2)}{\leq} e^{\alpha^2/2}$. *Hint:* For (1) use that for $y \in [-1,1]$, $e^{\lambda y} \leq \frac{e^{\lambda}+e^{-\lambda}}{2} + y \frac{e^{\lambda}-e^{-\lambda}}{2}$. Inequality (2) follows from the series expansion of $\cosh \alpha$.
- (b) Show that $E[e^{\alpha X_m}] \leq e^{\alpha^2 m/2}$.
- (c) Show that $P\left[X_m > \lambda \sqrt{m}\right] < e^{-\lambda^2/2}$.
- Submission: until 12:00, Dec. 15, through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.
- **Office hours:** Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation. Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on: https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/