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Exercise 1.1 Consider the Probability space (R2,B(R2),P) where P(dx) = 1
2π exp{− 1

2 (x2
1+x2

2)} dx
with x = (x1, x2) for x ∈ R2 and dx the Lebesgue measure on (R2,B(R2)). Find the distribution of
the random variable

Z : x = (x1, x2) ∈ R2 7→ x2
1 + x2

2 ∈ R.

Exercise 1.2 Let Z := (Ai)i∈I be a countable decomposition of a set Ω 6= ∅ in “atoms” Ai, that
is Ω =

⋃
i∈I Ai, where Ai ∩Ak = ∅ for i 6= k, and I countable.

(a) Show that the σ-algebra generated by Z is of the form

σ(Z) =


⋃
i∈J

Ai

∣∣∣∣∣∣ J ⊆ I
 .

Hint: Recall the definition of σ(Z).

(b) Show that the family of σ(Z)-measurable random variables is exactly the family of functions
on Ω that are constant on “atoms” (that is, all functions f such that for each i, f is constant
on Ai).

Exercise 1.3 Let Ω be a non-empty set and let X : Ω→ R and Y : Ω→ R be two functions. The
σ-algebra on Ω generated by X is defined by σ(X) :=

{
X−1(B) | B ∈ R

}
, where R denotes the

Borel σ-algebra on R. In this exercise we will show that:
Claim: Y is σ(X)-R-measurable ⇐⇒ there exists an R-R-measurable function f : R → R, such
that Y = f ◦X.

Hint: For (b)–(e), cf. the proof of (1.2.16) in the lecture notes.

(a) Show the ⇐= direction.

(b) Show the =⇒ direction for any Y of the form Y = 1A, where A ∈ σ(X).

(c) Show the =⇒ direction for any Y that is a linear combination of indicator functions, i.e. for
Y of the form Y =

∑n
i=1 ci1Ai , where n ∈ N, c1, . . . , cn ∈ R and A1, . . . , An ∈ σ(X).

(d) Show the =⇒ direction for any Y such that Y ≥ 0.

(e) Complete the proof of the claim (i.e. show the =⇒ direction for an arbitrary Y ).

Submission: until 12:00, Sep 29., through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

1 / 5



Probability Theory, Exercise sheet 1

Office hours: See the webpage for detailed information

• Präsenz (Group 3): Mon. and Thu., 12:00-13:00 in HG G32.6. with previous reservation.
• Probability Theory Assistants: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a
10 minutes slot reservation.

Exercise class: Online. In-person exercise classes need previous registration each week.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 1.1 Let |x| be the Euclidean norm of x = (x1, x2) ∈ R2 such that |x|2 = x2
1 + x2

2. Then
the random variable Z is the mapping Z(x) = |x|2. Let FZ denote the distribution function of Z,
i.e., for y ∈ R, FZ(y) = P[Z ≤ y]. Clearly, since Z(x) = |x|2 ≥ 0 for all x ∈ R2, we have FZ(y) = 0
for all y < 0. Now let y ≥ 0 and BR(0) := {x = (x1, x2) ∈ R2 : |x| ≤ R} be the (closed) ball
centered at 0 ∈ R2 with radius R ≥ 0. By the definition of the probability measure P we have

FZ(y) = P[Z ≤ y] = P[B√y(0)]

=
∫
B√y(0)

1
2π exp{−1

2 |x|
2} dx.

Using the polar coordinates x = (x1, x2) = (r cos θ, r sin θ) with r = |x| ≥ 0 and θ ∈ [0, 2π) as well
as the relation dx = rdrdθ, we can obtain∫

B√y(0)

1
2π exp{−1

2 |x|
2} dx =

∫ 2π

0

∫ √y
0

1
2π exp{−r

2

2 }r dr dθ

=
∫ √y

0
exp{−r

2

2 }r dr

= − exp{−r
2

2 }
∣∣∣∣
√
y

0

= 1− exp{−y2}.

Hence, the distribution function of Z is

FZ(y) =
{

1− exp{−y2}, if y ≥ 0;
0, if y < 0.

In other words, Z has the exponential distribution with parameter 1
2 .

Solution 1.2

(a) By definition, σ(Z) is the smallest σ-algebra that contains all Ai, i ∈ I, i.e.,

σ(Z) :=
⋂

U :U is a
σ-algebra

containing all Ai

U . (1)

We now show that σ(Z) =
{⋃

i∈J Ai

∣∣∣ J ⊆ I}:
“⊇” For any σ-algebra U that contains all Ai it holds that:⋃

i∈J
Ai ∈ U , J ⊆ I,

since J , being a subset of I, is countable, and σ-algebras are closed under countable
unions by definition. Therefore, we have that

σ(Z) (1)=
⋂
U ⊇


⋃
i∈J

Ai

∣∣∣∣∣∣ J ⊆ I
 .
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“⊆” Since U contains all Ai, it is sufficient to show that

U =


⋃
i∈J

Ai

∣∣∣∣∣∣ J ⊆ I


is a σ-algebra. We verify the conditions:
•
⋃
i∈J Ai = Ω, by choosing J = I, so Ω ∈ U ,

• for any J ⊂ I,
(⋃

i∈J Ai

)c
=
⋃
i∈I\J Ai ∈ U ,

• if Jn ⊆ I, n ≥ 1, then

⋃
n≥1

 ⋃
i∈Jn

Ai

 =
⋃

i∈∪n≥1Jn︸ ︷︷ ︸
=:J⊆I

Ai ∈ U .

(b) Let

F1 :=
{
f : Ω→ R

∣∣ f is σ(Z)-measurable
}

and
F2 := {f : Ω→ R | f is constant on Ai, i ∈ I} .

We want to show that F1 = F2:

“⊇” Let f ∈ F2. Then we can write

f(x) = ai for x ∈ Ai,

for some ai ∈ R. To check that f is σ(Z)-measurable, it suffices to check that {x ∈
Ω : f(x) ≤ a} is a measurable set for all a ∈ R. So let a ∈ R and decompose I in two
disjoint sets I1, I2 such that
• ai ≤ a for all i ∈ I1 and
• ai > a for all i ∈ I2.

We then have
{f ≤ a} =

⋃
i∈I1

{f = ai} =
⋃
i∈I1

Ai ∈ σ(Z).

“⊆” Let f ∈ F1. If f is measurable then the pre-image under f of any Borel measurable
subset of R must be measurable. Therefore {x ∈ Ω : f(x) = a} = f−1({a}) ∈ σ(Z) for
all a ∈ R. Thus, from part (a) we have {x ∈ Ω : f(x) = a} =

⋃
i∈J Ai for some J ⊆ I.

In particular, for all i ∈ I and a ∈ R

{f = a} ∩Ai ∈
{
∅, Ai

}
,

which implies that f is constant on Ai and f ∈ F2.

Solution 1.3

(a) If f : R→ R is R-R-measurable, Y = f ◦X and B ∈ R then

(f ◦X)−1 (B) = X−1(f−1 (B)︸ ︷︷ ︸
∈R

) ∈ σ(X).

That is Y is σ(X)-R-measurable.
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(b) Since A ∈ σ(X), there is a B ∈ R such that A = X−1(B). Therefore

Y = 1A = 1X−1(B) = 1B ◦X,

so the =⇒ direction holds for indicator functions.

(c) For each i we can apply part (b) to get a Bi ∈ R such that 1Ai
= 1Bi

◦X. Then

Y =
n∑
i=1

((ci1Bi
) ◦X) = (

n∑
i=1

ci1Bi
) ◦X = f ◦X,

with f =
∑n
i=1(ci1Bi). Furthermore f is R-R-measurable, so =⇒ direction holds for linear

combinations of indicator functions.

(d) Define the “step function approximations”

Yn :=
n2n−1∑
k=0

k

2n 1{ k
2n≤Y < k+1

2n } + n1{Y≥n}.

We then have Yn ↑ Y . Also Yn is a linear combination of indicator functions for all n, and
since Y is σ(X)-R-measurable the sets

{
k

2n ≤ Y < k+1
2n

}
⊂ Ω are in σ(X) (using also that

[k/2n, (k+1)/2n) and [n,∞) are inR). Thus, from (c) we know that there areR-R-measurable
functions fn such that Yn = fn ◦X. We define

g(x) := lim sup
n→∞

fn(x).

Since the lim sup of a sequence of measurable functions is measurable, we have that g is
a measurable function from R to (−∞,∞]. It can happen that g(x) = ∞ (but only for x
outside the range of X), so to deal with this technicality we set

f(x) := 1{g(x)<∞}g(x), x ∈ R.

Then f is R-R-measurable. Also, since Yn ↑ Y we have that f(x) = limn→∞ fn(x) for x in
the range of X, and thus

Y = lim
n→∞

Yn = lim
n→∞

fn ◦X = ( lim
n→∞

fn) ◦X = f ◦X.

This proves the =⇒ direction for non-negative Y .

(e) Write
Y = Y + − Y −,

for Y + = Y 1{Y≥0} and Y − = −Y 1{Y <0}. Then (d) applies to Y + and Y −, so we have
functions f and g such that

Y + = f ◦X and Y − = g ◦X.

Clearly
Y = (f − g) ◦X,

and f − g is R-R-measurable, so the claim follows.
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