Coordinator Daniel Contreras

Probability Theory

Exercise Sheet 1

Exercise 1.1 Consider the Probability space $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2), \mathbb{P})$ where $\mathbb{P}(dx) = \frac{1}{2\pi} \exp\{-\frac{1}{2}(x_1^2 + x_2^2)\} dx$ with $x = (x_1, x_2)$ for $x \in \mathbb{R}^2$ and dx the Lebesgue measure on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$. Find the distribution of the random variable

$$Z: x = (x_1, x_2) \in \mathbb{R}^2 \mapsto x_1^2 + x_2^2 \in \mathbb{R}.$$

Exercise 1.2 Let $\mathcal{Z} := (A_i)_{i \in I}$ be a countable decomposition of a set $\Omega \neq \emptyset$ in "atoms" A_i , that is $\Omega = \bigcup_{i \in I} A_i$, where $A_i \cap A_k = \emptyset$ for $i \neq k$, and I countable.

(a) Show that the σ -algebra generated by \mathcal{Z} is of the form

$$\sigma(\mathcal{Z}) = \left\{ \bigcup_{i \in J} A_i \middle| J \subseteq I \right\}.$$

Hint: Recall the definition of $\sigma(\mathcal{Z})$.

(b) Show that the family of $\sigma(\mathcal{Z})$ -measurable random variables is exactly the family of functions on Ω that are constant on "atoms" (that is, all functions f such that for each i, f is constant on A_i).

Exercise 1.3 Let Ω be a non-empty set and let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be two functions. The σ -algebra on Ω generated by X is defined by $\sigma(X) := \{X^{-1}(B) \mid B \in \mathcal{R}\}$, where \mathcal{R} denotes the Borel σ -algebra on \mathbb{R} . In this exercise we will show that:

Claim: Y is $\sigma(X)$ - \mathcal{R} -measurable \iff there exists an \mathcal{R} - \mathcal{R} -measurable function $f : \mathbb{R} \to \mathbb{R}$, such that $Y = f \circ X$.

Hint: For (b)-(e), cf. the proof of (1.2.16) in the lecture notes.

- (a) Show the \Leftarrow direction.
- (b) Show the \implies direction for any Y of the form $Y = 1_A$, where $A \in \sigma(X)$.
- (c) Show the \implies direction for any Y that is a linear combination of indicator functions, i.e. for Y of the form $Y = \sum_{i=1}^{n} c_i 1_{A_i}$, where $n \in \mathbb{N}, c_1, \ldots, c_n \in \mathbb{R}$ and $A_1, \ldots, A_n \in \sigma(X)$.
- (d) Show the \implies direction for any Y such that $Y \ge 0$.
- (e) Complete the proof of the claim (i.e. show the \implies direction for an arbitrary Y).
- Submission: until 12:00, Sep 29., through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.

Office hours: See the webpage for detailed information

- Präsenz (Group 3): Mon. and Thu., 12:00-13:00 in HG G32.6. with previous reservation.
- Probability Theory Assistants: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.

Exercise class: Online. In-person exercise classes need previous registration each week.

 $\label{eq:exercise sheets and further information are also available on: $https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/$$

Solution 1.1 Let |x| be the Euclidean norm of $x = (x_1, x_2) \in \mathbb{R}^2$ such that $|x|^2 = x_1^2 + x_2^2$. Then the random variable Z is the mapping $Z(x) = |x|^2$. Let F_Z denote the distribution function of Z, i.e., for $y \in \mathbb{R}$, $F_Z(y) = \mathbb{P}[Z \leq y]$. Clearly, since $Z(x) = |x|^2 \geq 0$ for all $x \in \mathbb{R}^2$, we have $F_Z(y) = 0$ for all y < 0. Now let $y \geq 0$ and $B_R(0) := \{x = (x_1, x_2) \in \mathbb{R}^2 : |x| \leq R\}$ be the (closed) ball centered at $0 \in \mathbb{R}^2$ with radius $R \geq 0$. By the definition of the probability measure \mathbb{P} we have

$$F_{Z}(y) = \mathbb{P}[Z \le y] = \mathbb{P}[B_{\sqrt{y}}(0)]$$
$$= \int_{B_{\sqrt{y}}(0)} \frac{1}{2\pi} \exp\{-\frac{1}{2}|x|^{2}\} dx.$$

Using the polar coordinates $x = (x_1, x_2) = (r \cos \theta, r \sin \theta)$ with $r = |x| \ge 0$ and $\theta \in [0, 2\pi)$ as well as the relation $dx = r dr d\theta$, we can obtain

$$\begin{split} \int_{B_{\sqrt{y}}(0)} \frac{1}{2\pi} \exp\{-\frac{1}{2}|x|^2\} \, dx &= \int_0^{2\pi} \int_0^{\sqrt{y}} \frac{1}{2\pi} \exp\{-\frac{r^2}{2}\} r \, dr \, d\theta \\ &= \int_0^{\sqrt{y}} \exp\{-\frac{r^2}{2}\} r \, dr \\ &= -\exp\{-\frac{r^2}{2}\} \Big|_0^{\sqrt{y}} \\ &= 1 - \exp\{-\frac{y}{2}\}. \end{split}$$

Hence, the distribution function of Z is

$$F_Z(y) = \begin{cases} 1 - \exp\{-\frac{y}{2}\}, & \text{if } y \ge 0; \\ 0, & \text{if } y < 0. \end{cases}$$

In other words, Z has the exponential distribution with parameter $\frac{1}{2}$.

Solution 1.2

(a) By definition, $\sigma(\mathcal{Z})$ is the smallest σ -algebra that contains all $A_i, i \in I$, i.e.,

$$\sigma(\mathcal{Z}) := \bigcap_{\substack{\mathcal{U} : \mathcal{U} \text{ is a} \\ \sigma-\text{algebra} \\ \text{containing all } A_i}} \mathcal{U}.$$
 (1)

We now show that $\sigma(\mathcal{Z}) = \left\{ \bigcup_{i \in J} A_i \middle| J \subseteq I \right\}$:

" \supseteq " For any σ -algebra \mathcal{U} that contains all A_i it holds that:

$$\bigcup_{i\in J} A_i \in \mathcal{U}, \qquad J\subseteq I,$$

since J, being a subset of I, is countable, and σ -algebras are closed under countable unions by definition. Therefore, we have that

$$\sigma(\mathcal{Z}) \stackrel{(1)}{=} \bigcap \mathcal{U} \supseteq \left\{ \bigcup_{i \in J} A_i \middle| J \subseteq I \right\}.$$

" \subseteq " Since \mathcal{U} contains all A_i , it is sufficient to show that

$$\mathcal{U} = \left\{ \bigcup_{i \in J} A_i \middle| J \subseteq I \right\}$$

is a σ -algebra. We verify the conditions:

- $\bigcup_{i \in J} A_i = \Omega$, by choosing J = I, so $\Omega \in \mathcal{U}$,
- for any $J \subset I$, $\left(\bigcup_{i \in J} A_i\right)^c = \bigcup_{i \in I \setminus J} A_i \in \mathcal{U}$,
- if $J_n \subseteq I, n \ge 1$, then

$$\bigcup_{n\geq 1} \left(\bigcup_{i\in J_n} A_i\right) = \bigcup_{\substack{i\in \bigcup_{n\geq 1}J_n\\=:J\subseteq I}} A_i \in \mathcal{U}.$$

(b) Let

$$F_1 := \{ f : \Omega \to \mathbb{R} \mid f \text{ is } \sigma(\mathcal{Z}) \text{-measurable} \} \text{ and}$$

$$F_2 := \{ f : \Omega \to \mathbb{R} \mid f \text{ is constant on } A_i, i \in I \}.$$

We want to show that $F_1 = F_2$:

" \supseteq " Let $f \in F_2$. Then we can write

$$f(x) = a_i \text{ for } x \in A_i$$

for some $a_i \in \mathbb{R}$. To check that f is $\sigma(\mathcal{Z})$ -measurable, it suffices to check that $\{x \in \Omega : f(x) \leq a\}$ is a measurable set for all $a \in \mathbb{R}$. So let $a \in \mathbb{R}$ and decompose I in two disjoint sets I_1, I_2 such that

- $a_i \leq a$ for all $i \in I_1$ and
- $a_i > a$ for all $i \in I_2$.

We then have

$$\{f \le a\} = \bigcup_{i \in I_1} \{f = a_i\} = \bigcup_{i \in I_1} A_i \in \sigma(\mathcal{Z})$$

"⊆" Let $f \in F_1$. If f is measurable then the pre-image under f of any Borel measurable subset of ℝ must be measurable. Therefore $\{x \in \Omega : f(x) = a\} = f^{-1}(\{a\}) \in \sigma(\mathcal{Z})$ for all $a \in \mathbb{R}$. Thus, from part (a) we have $\{x \in \Omega : f(x) = a\} = \bigcup_{i \in J} A_i$ for some $J \subseteq I$. In particular, for all $i \in I$ and $a \in \mathbb{R}$

$$\{f = a\} \cap A_i \in \{\emptyset, A_i\},\$$

which implies that f is constant on A_i and $f \in F_2$.

Solution 1.3

(a) If $f : \mathbb{R} \to \mathbb{R}$ is \mathcal{R} - \mathcal{R} -measurable, $Y = f \circ X$ and $B \in \mathcal{R}$ then

$$(f \circ X)^{-1}(B) = X^{-1}(\underbrace{f^{-1}(B)}_{\in \mathcal{R}}) \in \sigma(X).$$

That is Y is $\sigma(X)$ - \mathcal{R} -measurable.

(b) Since $A \in \sigma(X)$, there is a $B \in \mathcal{R}$ such that $A = X^{-1}(B)$. Therefore

$$Y = 1_A = 1_{X^{-1}(B)} = 1_B \circ X,$$

so the \implies direction holds for indicator functions.

(c) For each i we can apply part (b) to get a $B_i \in \mathcal{R}$ such that $1_{A_i} = 1_{B_i} \circ X$. Then

$$Y = \sum_{i=1}^{n} ((c_i 1_{B_i}) \circ X) = (\sum_{i=1}^{n} c_i 1_{B_i}) \circ X = f \circ X,$$

with $f = \sum_{i=1}^{n} (c_i 1_{B_i})$. Furthermore f is \mathcal{R} - \mathcal{R} -measurable, so \implies direction holds for linear combinations of indicator functions.

(d) Define the "step function approximations"

$$Y_n := \sum_{k=0}^{n2^n-1} \frac{k}{2^n} \mathbb{1}_{\left\{\frac{k}{2^n} \le Y < \frac{k+1}{2^n}\right\}} + n\mathbb{1}_{\{Y \ge n\}}.$$

We then have $Y_n \uparrow Y$. Also Y_n is a linear combination of indicator functions for all n, and since Y is $\sigma(X)$ - \mathcal{R} -measurable the sets $\left\{\frac{k}{2^n} \leq Y < \frac{k+1}{2^n}\right\} \subset \Omega$ are in $\sigma(X)$ (using also that $[k/2^n, (k+1)/2^n)$ and $[n, \infty)$ are in \mathcal{R}). Thus, from (c) we know that there are \mathcal{R} - \mathcal{R} -measurable functions f_n such that $Y_n = f_n \circ X$. We define

$$g(x) := \limsup_{n \to \infty} f_n(x).$$

Since the lim sup of a sequence of measurable functions is measurable, we have that g is a measurable function from \mathbb{R} to $(-\infty, \infty]$. It can happen that $g(x) = \infty$ (but only for xoutside the range of X), so to deal with this technicality we set

$$f(x) := 1_{\{g(x) < \infty\}} g(x), x \in \mathbb{R}.$$

Then f is \mathcal{R} - \mathcal{R} -measurable. Also, since $Y_n \uparrow Y$ we have that $f(x) = \lim_{n \to \infty} f_n(x)$ for x in the range of X, and thus

$$Y = \lim_{n \to \infty} Y_n = \lim_{n \to \infty} f_n \circ X = (\lim_{n \to \infty} f_n) \circ X = f \circ X$$

This proves the \implies direction for non-negative Y.

(e) Write

$$Y = Y^+ - Y^-,$$

for $Y^+ = Y \mathbb{1}_{\{Y \ge 0\}}$ and $Y^- = -Y \mathbb{1}_{\{Y < 0\}}$. Then (d) applies to Y^+ and Y^- , so we have functions f and g such that

$$Y^+ = f \circ X$$
 and $Y^- = g \circ X$.

Clearly

$$Y = (f - g) \circ X$$

and f - g is \mathcal{R} - \mathcal{R} -measurable, so the claim follows.