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Exercise 2.1 Take Ω = {a, b, c, d}, A = P(Ω) and C =
{
{a, b}, {c, d}, {a, c}, {b, d}

}
. Consider P

the equiprobability on Ω and Q the probability measure 1
2 (δa + δd) (with δa the point measure at

a, and δd the point measure at d).

(a) Show that σ(C) = A, and P and Q agree on C.

(b) Show that {A ∈ A; P (A) = Q(A)} is not a σ-algebra.

(c) Is C a π-system?

Exercise 2.2 Let (Ω,A, P ) be a probability space and (An)n∈N a sequence of sets from A. We
define

Ā := lim sup
n→∞

An :=
⋂

n∈N

⋃
k≥n

Ak , A := lim inf
n→∞

An :=
⋃

n∈N

⋂
k≥n

Ak.

Let 1B denote the indicator function of B ∈ A.

(a) Show that 1Ā = lim sup
n→∞

1An
and that 1A = lim inf

n→∞
1An

.

(b) Show that P [A] ≤ lim inf
n→∞

P [An] and that P [Ā] ≥ lim sup
n→∞

P [An].

Hint: Use a lemma from Section 1.2 in the lecture notes.

Exercise 2.3 In this exercise, we will construct a countably infinite number of independent random
variables, without using a product space with an infinite number of factors.

Consider Ω = [0, 1), equipped with the Borel σ-algebra and the Lebesgue measure P restricted
to [0, 1). We define the random variables

Yn : Ω→ R , n ≥ 1 ,

by

Yn(ω) :=
{

0 if b2nωc is even,
1 if b2nωc is odd,

where bxc = max {z ∈ Z | z ≤ x} denotes the integer part of x.

(a) Use the binary expansion of ω to show that ω =
∑

j≥1 Yj(ω)2−j .

(b) Show that for every n ≥ 1, Yn is in fact a random variable.

(c) Show that Yn , n ≥ 1, are independent and satisfy P [Yn = 0] = P [Yn = 1] = 1
2 .

Hint: You may use the following observation, without proving it:
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Let (Ω,A, P ) be a probability space and Y1, Y2, . . . be random variables on this space, each
taking values only in a countable set (that is, for each i there is a countable set Si such that
P [Yi ∈ Si] = 1). Assume that

P [Y1 = z1, Y2 = z2, . . . , Yn = zn] =
n∏

i=1
P [Yi = zi] for all z1, . . . , zn ∈ R (1)

holds for all n ≥ 1. Then, the infinite sequence of random variables (Yi)i≥1 is independent.

Exercise 2.4 (Optional.) A non-empty family C of subsets of a non-empty set Ω is called a
λ-system, if

(i) Ω ∈ C,

(ii) A,B ∈ C : B ⊂ A⇒ A \B ∈ C,

(iii) An ∈ C, An ⊂ An+1 ⇒
⋃

n An ∈ C.

Show that the definitions of a Dynkin system and a λ-system are equivalent.

Submission: until 12:00, Oct 6., through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: See the webpage for detailed information

• Präsenz (Group 3): Mon. and Thu., 12:00-13:00 in HG G32.6. with previous reservation.
• Probability Theory Assistants: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a
10 minutes slot reservation.

Exercise class: Online. In-person exercise classes need previous registration each week.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 2.1

(a) We start with the first claim. Because {a} = {a, b} ∩ {a, c}, we know that {a} ∈ σ(C). By
cyclic symmetry we obtain that {b}, {c}, {d} ∈ σ(C) as well. The first claim follows now from
Exercise 1.2 (a). For the second claim, we simply observe that ∀B ∈ C, P (B) = Q(B) = 1/2.

(b) Suppose {A ∈ A; P (A) = Q(A)} is a σ-algebra. Since this collection contains C, by (a), it
would contain also A, by (a). Thus, P and Q would be equal, which is a contradiction.

(c) No. By a direct inspection, we see that

{a, b} ∩ {a, c} = {a} /∈ C.

We can also show this by the following argument: If it were a π-system, by (1.3.11) in the
lecture notes, any P and Q agreeing on C would be equal.

Solution 2.2

(a) Let ω ∈ Ω. We will show
ω ∈ Ā⇔ lim sup

n→∞
1An

(ω) = 1. (2)

The case on Āc is handled analogously.
Let lim supn→∞ 1An(ω) = 1. Then for all n ∈ N we have

1 = lim sup
m→∞

1Am
(ω) = inf

m∈N
sup
k≥m

1Ak
(ω) ≤ sup

k≥n
1Ak

(ω) ≤ 1,

and thus supk≥n 1Ak
(ω) = 1. Since the indicator function 1 only takes the values 0 and 1,

there exists for each n ∈ N a k ≥ n such that ω ∈ Ak. In other words, ω ∈ Ā.
If on the other hand ω ∈ Ā, then there exists for all n ∈ N a k ≥ n for which ω ∈ Ak. Thus
supk≥n 1Ak

(ω) = 1 for every n ∈ N, implying lim supn→∞ 1An
(ω) = 1.

Thus, we have shown (2), and 1Ā = lim supn→∞ 1An
follows. To show the analogous result

for the lim inf we note that

(A)c =

⋃
n∈N

⋂
k≥n

Ak

c

=
⋂

n∈N

⋃
k≥n

Ac
k = lim sup

n→∞
Ac

n.

Thus we can deduce the result for lim inf from the already proven result for lim sup.

1A = 1− 1(A)c = 1− 1lim supn→∞Ac
n

= 1− lim sup
n→∞

1Ac
n

= lim inf
n→∞

(1− 1Ac
n
) = lim inf

n→∞
1An .

(b) These inequalities are immediate consequences of (a) and Fatou’s lemma.

Solution 2.3

(a) Let us write down the binary representation of ω, i.e.

ω =
∑
j≥1

ωj2−j , ωj ∈ {0, 1},

= 0.ω1ω2 . . .
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Technical point: In cases like ω = 1/2, which can be represented as both 0.1000 . . . and
0.01111 . . . , we choose the terminating binary representation, i.e the one which “ends” in an
infinite sequence of zeroes, which is the usual convention.

For ω = 0.ω1ω2 . . . ωj . . . ⇒ 2jω = ω1ω2 . . . ωj .ωj+1 . . . ∈ [ω1ω2 . . . ωj , ω1ω2 . . . ωj + 1),

⇒ b2jωc = ω1 . . . ωj ⇒

{
b2jωc = ω1 . . . ωj is odd, ⇒ ωj = 1,
b2jωc = ω1 . . . ωj is even, ⇒ ωj = 0.

Hence we have Yj(ω) = ωj . Since this holds for every j ≥ 1, we get the desired result.

(b) From the representation in part (a), we see that for n ≥ 1

{Yn = 0} = Ω ∩
2n−1−1⋃

j=0

[
2j
2n
,

2j + 1
2n

)
. (3)

Similarly, we have that {Yn = 1} belongs to the Borel σ-algebra of [0, 1). Thus the Yn are
measurable.

(c) From (3) we have that P [Yn = 0] = 2n−1/(2n) = 1/2 = P [Yn = 1]. To prove independence,
we note that for n ≥ 1 and z1, z2, . . . , zn ∈ {0, 1}, we have

P

 n⋂
j=1
{Yj = zj}

 = P


 n∑

j=1

zj

2j
,

n∑
j=1

zj

2j
+ 1

2n


 = 2−n =

n∏
j=1

P [Yj = zj ].

By the observation given in the hint, this implies independence of the infinite sequence {Yn},
n ≥ 1.

Solution 2.4 “⇐” Let C be a λ-system, then:

• Ω ∈ C, because of (i).

• Let A be in C, A ⊂ Ω (ii)⇒ Ac = Ω \A ∈ C.

• Let A,B ∈ C disjoint sets. Then we have that A ⊂ Bc ∈ C and due to (ii):

Bc \A ∈ C ⇒ (Bc \A)c = B ∪A ∈ C. (4)

Now let (Ai)i≥1 ⊂ C be pairwise disjoint subsets, and set Bn :=
⋃n

i=1Ai. By (4), Bn is in C for
every n ≥ 1, and clearly Bn ⊂ Bn+1. Therefore by (iii) we get that,⋃

n≥1
Bn =

⋃
i≥1

Ai ∈ C.

“⇒” Let C be a Dynkin-system, then we have:

(i): Ω ∈ C.

(ii): Let A,B be in C with A ⊂ B. Hence A ∩Bc = ∅, and therefore

A ∩Bc = ∅ ⇒ A ∪Bc ∈ C ⇒ (A ∪Bc)c = B \A ∈ C.

(iii): Let (An)n≥1 ⊂ C be a sequence satisfying that An ⊂ An+1 for every n ≥ 1 and set F1 = A1,

Fn := An \An−1
(ii)
∈ C. Then, Fn ∩ Fk = ∅, for k 6= n and

⋃
n≥1 Fn =

⋃
k≥1Ak ∈ C.
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