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Exercise 4.1 (A version of the Glivenko-Cantelli Theorem)
Let (X;)i>1 be real-valued, i.i.d. random variables on (€2, A, P) with continous distribution function

F :R —[0,1]. We define the empirical distribution by

F,:R — [0,1]

n

1

Show that,

sup |[F, (z) — F(z)] =30 P -as.

z€R
Hint: Show as an intermediate step that for every continuous and non-decreasing function
F:R — [0,1] and every sequence (F, : R — [0,1]),,>1 of non-decreasing functions it holds that if
F,(z) =3 F(x) for all z € Q = QU {£oc}, then (F},),>1 converge uniformly to F.
Remark: The statement of Glivenko-Cantelli also holds for non-continous distribution functions

as well.

Exercise 4.2
Let (X,,)n>1 be a sequence of i.i.d. random variables in a probability space (€2, A, P). Define
the two sequences of random variables (Y,,),>1 and (M,),>1 by

Y, = min X; and M, = max X;
1<i<n 1<i<n

1. Let X be uniformly distributed on the interval [0, 1]. Show that nY,, converges in distribution

to an exponential random variable Z with parameter 1, i.e., the density of Z is e ™" 19 o) (), = €
R.

2. Let X7 be exponentially distributed with parameter 1. Show that M, — logn converges
in distribution to a random variable Z with Gumbel distribution, i.e. the density of Z is
e Texp(—e "),z €R.
Exercise 4.3

(a) Let f be a (not necessarily Borel-measurable) function from R to R. Show that the set of
discontinuities of f, defined as

Uy :={z € R| f is discontinuous in z},
is Borel-measurable.

(b) Assume that X,, — X in distribution. Let f be measurable and bounded, such that
P[X € Uy] = 0. Use (2.2.13) — (2.2.14) from the lecture notes to show that we have

E[f(X.)] = Ef(X)]

1/5



Probability Theory, Exercise sheet 4

(c) Let f be measurable and bounded on [0, 1], with Uy of Lebesgue measure 0. Show that the
corresponding Riemann sums converge to the integral of f, i.e.

1 n k L
nEf(TJ njoo/o f(x)da.

Submission: until 12:00, Oct 20., through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: See the webpage for detailed information

e Prisenz (Group 3): Mon. and Thu., 12:00-13:00 in HG G32.6. with previous reservation.

e Probability Theory Assistants: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a
10 minutes slot reservation.

Exercise class: Online. In-person exercise classes need previous registration each week.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L /
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Solution 4.1
We start proving the statement of the hint. Let € > 0 and take —oco =zg <21 < -+ <z, =
o0 € Q = QU {£oo} for some n € N such that

F(xiy1) — F(z;) <, (1)

note that this is possible by the continuity of F' and the fact that F' it is non-decreasing with
lim, o f(z) =1 and lim,, o f(z) = 0. We assume that Fy,,(z) M0 F(z) for all z € Q, which
imply that there exists N € N such that for all m > N

sup |F(x;) — F(x;)] < e. (2)
0<i<n

Note that for all z € R there exists i € {0,...,n — 1} such that z; < 2 < 2;4;. Combining (1) and
(2) we get that,
Fnz(x) - F(I) < Fm(xi—i-l) - [F(xl-‘rl) - 6] < 2e.
and
F(z) — Fp(x) < [F(z;) + €] — Fin(z;) < 2e.

Therefore |F,,(z) — F(z)| < 2¢ for all # € R and m > N, so we get the desired uniform convergence.
Now we apply this result to our problem. Let us remark that for each given 2 € R, F,,(z) is actually
a random variable: w +— % Z:;l L{x;(w)<z}- To keep notation clean we usually omit w in F,.

By the Strong Law of Large Numbers,

1 n
Fo(x) = o Z lix,<zy = P(Xi < x) = F(x), P-as.,

=1

which imply that for all z € Q (do0 is trivial) there exists N, C Q with P(N,) = 0 such that for all
wé N, F,(z,w) = F(z) as n goes to co. Let N be defined as N := Uye@ Ny, then for all z € Q
and w € N, F,(z,w) — F(x) pointwise, therefore, by the hint above, Yw ¢ N, F,, — F uniformly
as n goes to infinity. Since N is the countable union of set with measure 0 we have that P(N) =0
and then F, () — F(z) uniformly P-a.s..

Solution 4.2

1. Take y € R. For y < 0, because the exponential distribution is concentrated on [0, c0), we
have that
P[nY, <y]=0=P[Z <y] forall n € N.

Hence without loss of generality we assume y > 0. It follows that for all n > y:
Py, <yl=P|v,<?l=P|Jixi<t| =1-P|N{x:>2
- n Paet n : n

zl—ﬁP{Xi>7ﬂ :1—(1—2)".

i=1

Now let n — oo, we hence obtain that

y
ILm PnY,<yl=1—-eY= / e " 1p,00)(x) dv.
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2. Take y € R. Then for all n > e™¥ we have that:

P[M, —logn <y|=P[M, <y+logn] =P ﬂ{XiSy—l—logn}

=1

n oY n
:HP[XiSy—i—logn]: 1—7 .

i=1 .
=1—e—y—logn=1_e Y
n

Now let n — 0o, we hence obtain that

Y
lim P [Mn — logn g y] = exp(_e_y) — / e ® exp(_e—m) dz.

n— 00

Solution 4.3
(a) Let f: R — R and
Ves i= {x eER|Fy,z € (x — 0,z +9) s.t. |f(y)— f(2)| > 6} .

(i) Claim: V. s is open.
Let « € V¢ 5. Then there are y,z € (z — d,x + 0) such that |f(y) — f(2)| > e. We set
ri=6—max{|y — x| |z — x|} > 0.
=VZe(r—r,x+r)itholds that |y — 2| < |y —a|+ |z — 2| < |y —z|+r <4, and
similarly for z. From this it follows that v,z € (£ —d,Z+6) and |f(y) — f(2)| > €, which
gives ¥ € V5. So (z —r,z 4+ 1) C Ve 5, and the claim follows.

(i) Claim: U =, N,, V2 2.

n’m

“C“ Let x € Uy. Then there is an n € N, such that

VmeNIye (x—%,x—i—i) s.t. |f(w)—f(y)|2%

m

“O We assume that for somen € N, 2 € V1 1,V m. Then there are y, z € (xf%, r+ %)
so that | f(y) — f(2)] > ;.

From this it follows that either | f(y) — f(z)| > 5= or | f(2) — f(z)| > 5~ must hold. In
other words 9 n € N, such that

1 1 1
VmeNdye (m——,x—i——) f ) — f(z)] > —,
m m 2n
which implies that f is discontinuous in x.
Since the V1 1 are open, they are Borel measurable. And since any o—algebra is closed

under countable unions and intersections, U =U,MN,, V2 1 must also be Borel measurable.

1 1
no'm

(b) By (2.2.13) — (2.2.14) of the lecture notes, there exist Y, < Xp,andY 4 X,suchthat Y, —» Y,
P’-almost surely on a probability space (', F’, P"). Of course, we also have f(Y},) 4 f(Xn),
and f(Y) 4 f(X), so that we have E[f(X,)] = F'[f(Y,)], and E[f(X)] = E’[f(Y)], where
we denote by E’ the expectation w.r.t. P’. Thus, it suffices to show that

E'lf(Ya)] = ETf(Y)]. (3)

n—roo

Now, since Y;, — Y, P’-almost surely, we have a set N, with P'(N) = 0, such that

{w' €V | Yalw) = Y(w’)} UN=Q. (4)
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On the other hand, we have
(W' | Vo) = Y(w')} C {w'| f cont. in Y(w'), YVa(w') — Y (')} U{w]| f discont. in ¥ (w)}
CH{w' | f(Ya(w) = f(Y (W)} U | Y () € Uy}
Consequently, it follows from equation (4) that we have
{W | fYa(w) = fY (W)} U{w | Y(w') € UsfUN = Q.

But, by assumption P'(Y € Uy) = P(X € Uy) = 0 (recall that Y and X have the same
distribution). Therefore, we get f(Y,) — f(Y), P’-almost surely. Finally f is a bounded
function, so by the Dominated Convergence Theorem equation (3) holds.

Let A be the Lebesgue measure on [0, 1], and, for all a € [0,1], let §, denote the Dirac delta
measure on [0,1]. Let X,,, n > 1, be random variables with distribution £ ", .. Note

that
Bl =3 7(%)
" n)’
k=1
Let X be a uniform random variable on [0, 1], hence it has distribution A, and we note that

1
B0 = [ F@)r(do).
0
Thus, it suffices to show that we have

E[f(Xn)] = E[f(X)]. (5)

n—oo

Since by assumption P[X € Uyl = A(Uy) = 0, part b) implies that equation (5) is a
consequence of the following:
X, % X (6)

To show equation (6), note that for all n € N,

0, a <0,
P[X,<da=q2 o0<a<i,
1, 1 <a.

Since we have na —1 < [na] < na (i.e. [na] denotes the integer part of na), we get @ — a,
n—oo
for all 0 < a < 1. Thus, we obtain, for 0 < a <1,

P[X,<a] — X[0,a])=P[X <aq],

n—oo

which implies equation (6), by definition. (Cases for a < 0 and a > 1 are trivially verified.)
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