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Exercise 9.1 Let S, T : Ω→ N ∪ {∞} be Fn-stopping times. Prove or provide a counter example
disproving the following statements:

(a) S − 1 is a stopping time.

(b) S + 1 is a stopping time.

(c) S ∧ T is a stopping time.

(d) S ∨ T is a stopping time.

(e) S + T is a stopping time.

Exercise 9.2 Let (Ω,F , P ) be a probability space with a filtration (Fn)n≥0. Let S ≤ T be two
bounded (Fn)n≥0-stopping times and let (Xn)n≥0 be an (Fn)n≥0-submartingale. Show that

E[XT |FS ] ≥ XS , P -a.s..

(See (3.3.6) on p. 89 of the lecture notes for the definition of FS .)

Exercise 9.3 Let Yn, n ≥ 0 be i.i.d. with P [Y0 = 1] = p and P [Y0 = 0] = 1− p for some p ∈ (0, 1).
Let Fn := σ(Y0, . . . , Yn) for n ≥ 0 and define

T := inf{n ≥ 0 | Yn = 1}.

Determine the Doob decomposition of Xn := 1{T≤n}, n ≥ 0.
Hint: First check that Xn is an Fn-submartingale. Then try to use Proposition 3.19.

————————————————————————————————————————————

Submission: until 12:00, Nov. 24, through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.
Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 9.1 First we show that an Fn-stopping time S can be defined equivalently by the
conditions {S = n} ∈ Fn or {S ≤ n} ∈ Fn.

If {S = n} ∈ Fn for all n ≥ 0, then for all 0 ≤ k ≤ n, {S = k} ∈ Fk ⊆ Fn, which implies that
{S ≤ n} =

⋃n
k=0{S = k} ∈ Fn. On the other hand, {S ≤ n} ∈ Fn for all n ≥ 0 implies that

• {S = 0} ∈ F0;

• {S ≤ n − 1} ∈ Fn−1 ⊆ Fn for all n ≥ 1. Hence one knows that for all n ≥ 1, {S = n} =
{S ≤ n} \ {S ≥ n− 1} ∈ Fn.

From now on we will use the one most convenient for our purpose in the following.

(a) In general, S − 1 need not be a stopping time. Intuitively, this is because to know whether
S − 1 has ‘happened’ by time n, information about time n+ 1 is needed. A counter example
can be constructed as follows:
Let Ω = {0, 1}, F0 = {∅,Ω} and Fn = {∅, {0}, {1},Ω} for n ≥ 1. We define

S = 1{1} + 2 · 1{0}.

Then {S ≤ 0} = ∅ ∈ F0, {S ≤ 1} = {1} ∈ F1, and {S ≤ k} = Ω ∈ Fk for all k ≥ 2. Thus,
S is a Fn-stopping time. However, {S − 1 ≤ 0} = {S ≤ 1} = {1} 6∈ F0, so S − 1 is not a
stopping time.

(b) S + 1 is a stopping time, since for any n ≥ 0,

{S + 1 ≤ n} = {S ≤ n− 1} ∈ Fn−1 ⊆ Fn.

(c) S ∧ T is a stopping time, since for any n ≥ 0,

{S ∧ T ≤ n} = {S ≤ n} ∪ {T ≤ n} ∈ Fn.

(d) S ∨ T is a stopping time, since for any n ≥ 0,

{S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n} ∈ Fn.

(e) S + T is a stopping time, since for any n ≥ 0,

{S + T = n} =
n⋃

k=0
{S = k}︸ ︷︷ ︸
∈Fk⊆Fn

∩{T = n− k}︸ ︷︷ ︸
∈Fn−k⊆Fn

∈ Fn.

Solution 9.2 Because S, T are bounded, there exists some k ≥ 0, such that S ≤ T ≤ k P -almost
surely. We then observe that XS , XT are integrable because both of them are dominated by the
integrable random variable |X0|+ . . .+ |Xk|.

Now let F ∈ FS . We define a sequence (Cn)n≥1 of non-negative, bounded random variables
through

Cn(ω) := 1F (ω)1(S(ω),T (ω)](n), ω ∈ Ω, n ≥ 1.

Because {T ≤ n− 1} ∈ Fn−1 and F ∩ {S ≤ n− 1} ∈ Fn−1, one has that

Cn = 1F 1{S<n}1{T≥n} = 1F∩{S≤n−1}1{T≤n−1}c

is Fn−1-measurable. This implies that (Cn)n≥1 is predictable.
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By Theorem 3.22, p.93 of the lecture notes, it follows that C · X is a submartingale (with
(C ·X)0 = 0). Hence it follows that

0 ≤ E[(C ·X)k] = E

 k∑
n=1

Cn(Xn −Xn−1)

 = E
[
(XT −XS)1F

]
.

Because F ∈ FS is arbitrary, one has that E[XT | FS ] ≥ XS , P -a.s.

Solution 9.3 As in the hint, we first check that Xn is an Fn-submartingale. Clearly, Xn is
Fn-adapted. Furthermore, Xn is bounded for all n, so it is integrable. Finally, 1{T≤n+1} ≥ 1{T≤n}
for every n ≥ 0, since {T ≤ n} ⊆ {T ≤ n+ 1}. Due to this, and by the monotonicity property of
conditional expectation, we obtain

E[Xn+1|Fn] = E[1{T≤n+1}|Fn] ≥ E[1{T≤n}|Fn] = 1{T≤n} = Xn P -a.s.

Hence, Xn is an Fn-submartingale, so the Doob decomposition (unique up to P -nullsets) must exist.
In other words, there exists a martingale Mn, n ≥ 0, and a predictable, non-decreasing process An,
with A0 = 0, such that

Xn = Mn +An, n ≥ 0.

To find Mn and An, we follow the proof of existence of this decomposition, see Proposition 3.19,
p. 90 of the lecture notes. For our Xn, we have for k ≥ 0:

E[Xk −Xk−1|Fk−1] = E[1{T≤k} − 1{T≤k−1}|Fk−1]
= E[1{T =k}|Fk−1]
= E[1{Yk=1}1{T >k−1}|Fk−1]
= 1{T >k−1}E[1{Yk=1}|Fk−1]
= 1{T >k−1}P [Yk = 1]
= p1{T >k−1} (= Ak −Ak−1) P -a.s.,

(1)

since Y is independent of Fk−1. Thus, we define

An :=
n∑

k=1
p1{T >k−1} = p · (T ∧ n), n ≥ 0, (2)

and
Mn := Xn −An = 1{T≤n} − p · (T ∧ n), n ≥ 0.

Therefore, the unique Doob’s decomposition of Xn is given by

Xn = Mn +An =
(

1{T≤n} − p · (T ∧ n)
)

+ p · (T ∧ n), n ≥ 0.

3 / 3


