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Exercise 11.1 (The generalized Borel-Cantelli lemma)
Consider (Ω,F , P ) with filtration {Fn}n≥0, and let An ∈ Fn, n ≥ 1, be a sequence of events. Show
that, up to a P -nullset,

lim sup
n→∞

An = {
∑
n≥1

P [An|Fn−1] =∞}.

Hint: Use Exercise 10.3.

Exercise 11.2 Consider Y,Xi, i ≥ 1, independent random variables with Y ≥ 0, integer valued such
that E[Y ] = µ ∈ (1,∞), and Xi, i ≥ 1, i.i.d. Bernoulli random variables with P [Xi = 0] = q ∈ (0, 1).
If Sm,m ≥ 0, denotes the partial sums of theXi, let ν be the law of SY . Consider the Galton-Watson
chain Zn, n ≥ 0 with offspring distribution ν (see p. 97 of the Lecture Notes).

(a) For which values of q is the Galton-Watson chain subcritical?

(b) If Y is constant and equal to 2, find

f(q) := P [Zn > 0, for all n ≥ 0].

Hint: See Lecture Notes p. 100.

Exercise 11.3 Let (Yn)n∈N be a sequence of independent, non-negative random variables with
expectation 1. Consider the natural filtration (Fn)n≥0. We define

M0 = 1, Mn = Y1Y2 · · ·Yn, for n ∈ N.

(a) Prove that (Mn)n∈N is a non-negative martingale with respect to the filtration (Fn)n≥0 and
there exists a random variable M∞, so that Mn →M∞ a.s.

(b) Let an := E[
√
Yn]. Show that an ∈ (0, 1].

(c) Show that if
∏

n an > 0, it holds that Mn →M∞ in L1 and E[M∞] = 1.

Hint: Let Ŷn :=
√
Yn/an and M̂n := Ŷ1Ŷ2, . . . , Ŷn for n ≥ 1, M̂0 = 1. Note that Mn ≤ M̂2

n

for n ∈ N. Then use (a) together with Doob’s inequality to conclude the proof.

(d) Show that if
∏

n an = 0, then M∞ = 0 a.s.

————————————————————————————————————————————

Submission: until 12:00, Dec. 8, through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.
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Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.
Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 11.1 We define X0 := 0, Xn :=
∑n

m=1
(
1Am

− P [Am|Fm−1]
)
, n ≥ 1. Then Xn is an

Fn-martingale, since

E[Xn+1 −Xn|Fn] = E
[
1An+1 − P [An+1|Fn]

∣∣Fn

]
= 0.

Furthermore |Xn+1 −Xn| ≤ 2. We apply the result of Exercise 10.3 to obtain P [C ∪D] = 1. Note
that:

•
∑

n≥1 1An =∞⇐⇒
∑

n≥1 P [An|Fn−1] =∞ on C.

•
∑

n≥1 1An
=∞ and

∑
n≥1 P [An|Fn−1] =∞ on D.

Using that P [C ∪D] = 1, we get that for an event N with P [N ] = 0,∑
n≥1

1An =∞

 ∩N c =

∑
n≥1

P [An|Fn−1] =∞

 ∩N c.

Finally, the claim follows since

lim sup
n→∞

An =

∑
n≥1

1An
=∞

.
Solution 11.2

(a) Let us observe that

E[SY ] = E

 ∞∑
n=0

Sn1{Y =n}

 MCT+ind.=
∞∑

n=0
E[Sn]P [Y = n]

i.i.d.=
∞∑

n=1
E[X1] · nP [Y = n] = (1− q)E[Y ] = (1− q)µ.

We know that this Galton-Watson process is subcritical if and only if E[SY ] < 1, that is,
when q > 1− 1/µ.

(b) Let us observe that when Y = 2, we have

m = E[SY ] = 2(1− q)


< 1 if q ∈ ( 1

2 , 1],
= 1 if q = 1

2 ,

> 1 if q ∈ [0, 1
2 ).

Thus, if q ∈ ( 1
2 , 1], our Galton-Watson process is subcritical, if q = 1

2 it is critical, and if
q ∈ [0, 1

2 ) it is supercritical.
For a subcritical Galton-Watson process, we have P [Zn = 0 eventually] = 1 by (3.5.7), p. 99,
and by (3.5.10), p. 100 of the lecture notes also for a critical process. Hence,

f(q) = 0 ∀q ∈ [1/2, 1].

In the supercritical case, we have, by (3.5.13), p. 101 of the lecture notes,

P [Zn = 0 eventually] = % ∈ [0, 1),

where % is the unique solution to % = ϕ(%) in [0, 1), and let X be a random variable with
distribution ν, we have

ϕ(z) = E[zX ] =
2∑

k=0
P [X = k]zk = q2 + 2q(1− q)z + (1− q)2z2,
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(see (3.5.11), p. 100 of the lecture notes, and the explanations right below it). Solving the
quadratic equation

ϕ(z) =
(
q + (1− q)z

)2 = z

for z, we obtain the solutions z = 1 and z = q2

(1−q)2 . Thus, the unique solution to ϕ(%) = % in
[0, 1) is

% = q2

(1− q)2 ,

from which it follows that

f(q) = 1− P [Zn = 0 eventually] = 1− % = 1− q2

(1− q)2 = 1− 2q
(1− q)2 ,

for q ∈ [0, 1/2).
Comment: ν has the following interpretation. Given an infected individual having a random
number of contact individuals with the same distribution as Y . Suppose each contact individual
is independently susceptible with probability p = 1− q and immune with probability q. Then
ν describes the law of infected contacts of the original (infected) individual.

Solution 11.3

(a) Since (Mn)n≥0 is adapted to the filtration Fn = σ(Y0, . . . , Yn)n∈N and, for n ∈ N, E[|Mn|] =
E[Y1] · · ·E[Yn] = 1, it holds that Mn ∈ L1. Moreover,

E[Mn+1|Fn] = E[MnYn+1|Fn]
(Mn Fn-meas.) = MnE[Yn+1|Fn]

(Yn+1, Fn indep.) = MnE[Yn+1] = Mn.

Hence, (Mn)n≥0 is a Fn-martingale with supn∈NE[Mn] = 1 < ∞ and, by the martingale
convergence theorem ((3.4.23) in the lecture notes), Mn converges to an integrable random
variable M∞ P -a.s.

(b) From the Cauchy-Schwarz (or Hölder) inequality it follows that,

an = E[
√
Yn] ≤ E[Yn]1/2E[1]1/2 = 1.

Thus, since Yn ≥ 0 P -a.s. and therefore
√
Yn ≥ 0 P -a.s. and E[Yn] = 1, it must hold that

an > 0.

(c) We define Ŷn =
√
Yn/an and M̂n = Ŷ1Ŷ2, . . . , Ŷn, M̂0 = 1. Then, from (a), the process

(M̂n)n∈N is also a non-negative martingale, converging to an integrable random variable M̂∞.
Furthermore Mn ≤ M̂2

n for n ∈ N.
Suppose that

∏
n an > 0. Then we get,

E[M̂2
n] = (a1a2 · · · an)−2 ≤

(∏
n

an

)−2

<∞.

Therefore, M̂n ∈ L2, and by Doob’s inequality (see Corollary 3.34),

E

[
sup
n∈N

Mn

]
≤ E

[
sup
n∈N

M̂2
n

]
≤ 4 sup

n∈N
E[M̂2

n] <∞.

From Lebesgue convergence theorem (|Mn−M∞| ≤ 2 supn∈NMn ∈ L1) we obtain convergence
also in L1.

(d) Suppose that
∏

n an = 0. Then, from the P -a.s. convergence of M̂n =
√
Mn/(

∏n
i=1 ai) to an

a.s. finite random variable M̂∞ ∈ L1, it follows that M∞ = 0 a.s.
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