Coordinator Daniel Contreras

Probability Theory

Exercise Sheet 11

Exercise 11.1 (The generalized Borel-Cantelli lemma) Consider (Ω, \mathcal{F}, P) with filtration $\{\mathcal{F}_n\}_{n\geq 0}$, and let $A_n \in \mathcal{F}_n$, $n \geq 1$, be a sequence of events. Show that, up to a *P*-nullset,

$$\limsup_{n \to \infty} A_n = \{ \sum_{n \ge 1} P[A_n | \mathcal{F}_{n-1}] = \infty \}.$$

Hint: Use Exercise 10.3.

Exercise 11.2 Consider $Y, X_i, i \ge 1$, independent random variables with $Y \ge 0$, integer valued such that $E[Y] = \mu \in (1, \infty)$, and $X_i, i \ge 1$, i.i.d. Bernoulli random variables with $P[X_i = 0] = q \in (0, 1)$. If $S_m, m \ge 0$, denotes the partial sums of the X_i , let ν be the law of S_Y . Consider the Galton-Watson chain $Z_n, n \ge 0$ with offspring distribution ν (see p. 97 of the Lecture Notes).

- (a) For which values of q is the Galton-Watson chain subcritical?
- (b) If Y is constant and equal to 2, find

 $f(q) := P[Z_n > 0, \text{ for all } n \ge 0].$

Hint: See Lecture Notes p. 100.

Exercise 11.3 Let $(Y_n)_{n \in \mathbb{N}}$ be a sequence of independent, non-negative random variables with expectation 1. Consider the natural filtration $(\mathcal{F}_n)_{n \geq 0}$. We define

 $M_0 = 1, \quad M_n = Y_1 Y_2 \cdots Y_n, \text{ for } n \in \mathbb{N}.$

- (a) Prove that $(M_n)_{n \in \mathbb{N}}$ is a non-negative martingale with respect to the filtration $(\mathcal{F}_n)_{n \geq 0}$ and there exists a random variable M_{∞} , so that $M_n \to M_{\infty}$ a.s.
- (b) Let $a_n := E[\sqrt{Y_n}]$. Show that $a_n \in (0, 1]$.
- (c) Show that if $\prod_n a_n > 0$, it holds that $M_n \to M_\infty$ in L^1 and $E[M_\infty] = 1$. *Hint:* Let $\hat{Y}_n := \sqrt{Y_n}/a_n$ and $\hat{M}_n := \hat{Y}_1 \hat{Y}_2, \ldots, \hat{Y}_n$ for $n \ge 1$, $\hat{M}_0 = 1$. Note that $M_n \le \hat{M}_n^2$ for $n \in \mathbb{N}$. Then use (a) together with Doob's inequality to conclude the proof.
- (d) Show that if $\prod_n a_n = 0$, then $M_{\infty} = 0$ a.s.
- Submission: until 12:00, Dec. 8, through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation. Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

 $\label{eq:exercise sheets and further information are also available on: $https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/$$

Solution 11.1 We define $X_0 := 0$, $X_n := \sum_{m=1}^n (1_{A_m} - P[A_m | \mathcal{F}_{m-1}])$, $n \ge 1$. Then X_n is an \mathcal{F}_n -martingale, since

$$E[X_{n+1} - X_n | \mathcal{F}_n] = E\left[1_{A_{n+1}} - P[A_{n+1} | \mathcal{F}_n] | \mathcal{F}_n\right] = 0.$$

Furthermore $|X_{n+1} - X_n| \le 2$. We apply the result of Exercise 10.3 to obtain $P[C \cup D] = 1$. Note that:

- $\sum_{n\geq 1} 1_{A_n} = \infty \iff \sum_{n\geq 1} P[A_n | \mathcal{F}_{n-1}] = \infty$ on C.
- $\sum_{n\geq 1} 1_{A_n} = \infty$ and $\sum_{n\geq 1} P[A_n | \mathcal{F}_{n-1}] = \infty$ on D.

Using that $P[C \cup D] = 1$, we get that for an event N with P[N] = 0,

$$\left\{\sum_{n\geq 1} 1_{A_n} = \infty\right\} \cap N^c = \left\{\sum_{n\geq 1} P[A_n | \mathcal{F}_{n-1}] = \infty\right\} \cap N^c.$$

Finally, the claim follows since

$$\limsup_{n \to \infty} A_n = \left\{ \sum_{n \ge 1} 1_{A_n} = \infty \right\}.$$

Solution 11.2

(a) Let us observe that

$$E[S_Y] = E\left[\sum_{n=0}^{\infty} S_n \mathbf{1}_{\{Y=n\}}\right] \stackrel{\text{MCT+ind.}}{=} \sum_{n=0}^{\infty} E[S_n]P[Y=n]$$

$$\stackrel{\text{i.i.d.}}{=} \sum_{n=1}^{\infty} E[X_1] \cdot nP[Y=n] = (1-q)E[Y] = (1-q)\mu$$

We know that this Galton-Watson process is subcritical if and only if $E[S_Y] < 1$, that is, when $q > 1 - 1/\mu$.

(b) Let us observe that when Y = 2, we have

$$m = E[S_Y] = 2(1-q) \begin{cases} < 1 & \text{if } q \in (\frac{1}{2}, 1], \\ = 1 & \text{if } q = \frac{1}{2}, \\ > 1 & \text{if } q \in [0, \frac{1}{2}). \end{cases}$$

Thus, if $q \in (\frac{1}{2}, 1]$, our Galton-Watson process is subcritical, if $q = \frac{1}{2}$ it is critical, and if $q \in [0, \frac{1}{2})$ it is supercritical.

For a subcritical Galton-Watson process, we have $P[Z_n = 0 \text{ eventually}] = 1$ by (3.5.7), p. 99, and by (3.5.10), p. 100 of the lecture notes also for a critical process. Hence,

$$f(q) = 0 \quad \forall q \in [1/2, 1]$$

In the supercritical case, we have, by (3.5.13), p. 101 of the lecture notes,

$$P[Z_n = 0 \text{ eventually}] = \varrho \in [0, 1).$$

where ρ is the unique solution to $\rho = \varphi(\rho)$ in [0, 1), and let X be a random variable with distribution ν , we have

$$\varphi(z) = E[z^X] = \sum_{k=0}^{2} P[X=k]z^k = q^2 + 2q(1-q)z + (1-q)^2 z^2,$$

3/4

(see (3.5.11), p. 100 of the lecture notes, and the explanations right below it). Solving the quadratic equation

$$\varphi(z) = \left(q + (1-q)z\right)^2 = z$$

for z, we obtain the solutions z = 1 and $z = \frac{q^2}{(1-q)^2}$. Thus, the unique solution to $\varphi(\varrho) = \varrho$ in [0, 1) is

$$\varrho = \frac{q^2}{\left(1-q\right)^2},$$

from which it follows that

$$f(q) = 1 - P[Z_n = 0 \text{ eventually}] = 1 - \varrho = 1 - \frac{q^2}{(1-q)^2} = \frac{1-2q}{(1-q)^2},$$

for $q \in [0, 1/2)$.

Comment: ν has the following interpretation. Given an infected individual having a random number of contact individuals with the same distribution as Y. Suppose each contact individual is independently susceptible with probability p = 1 - q and immune with probability q. Then ν describes the law of infected contacts of the original (infected) individual.

Solution 11.3

(a) Since $(M_n)_{n\geq 0}$ is adapted to the filtration $\mathcal{F}_n = \sigma(Y_0, \ldots, Y_n)_{n\in\mathbb{N}}$ and, for $n\in\mathbb{N}$, $E[|M_n|] = E[Y_1]\cdots E[Y_n] = 1$, it holds that $M_n\in L^1$. Moreover,

$$E[M_{n+1}|\mathcal{F}_n] = E[M_n Y_{n+1}|\mathcal{F}_n]$$

(M_n $\mathcal{F}_{n-\text{meas.}} = M_n E[Y_{n+1}|\mathcal{F}_n]$
Y_{n+1}, \mathcal{F}_n indep.) = $M_n E[Y_{n+1}] = M_n$

Hence, $(M_n)_{n\geq 0}$ is a \mathcal{F}_n -martingale with $\sup_{n\in\mathbb{N}} E[M_n] = 1 < \infty$ and, by the martingale convergence theorem ((3.4.23) in the lecture notes), M_n converges to an integrable random variable M_{∞} *P*-a.s.

(b) From the Cauchy-Schwarz (or Hölder) inequality it follows that,

(

$$a_n = E[\sqrt{Y_n}] \le E[Y_n]^{1/2} E[1]^{1/2} = 1.$$

Thus, since $Y_n \ge 0$ *P*-a.s. and therefore $\sqrt{Y_n} \ge 0$ *P*-a.s. and $E[Y_n] = 1$, it must hold that $a_n > 0$.

(c) We define $\hat{Y}_n = \sqrt{Y_n}/a_n$ and $\hat{M}_n = \hat{Y}_1 \hat{Y}_2, \ldots, \hat{Y}_n, \hat{M}_0 = 1$. Then, from (a), the process $(\hat{M}_n)_{n \in \mathbb{N}}$ is also a non-negative martingale, converging to an integrable random variable \hat{M}_{∞} . Furthermore $M_n \leq \hat{M}_n^2$ for $n \in \mathbb{N}$.

Suppose that $\prod_n a_n > 0$. Then we get,

$$E[\hat{M}_{n}^{2}] = (a_{1}a_{2}\cdots a_{n})^{-2} \le \left(\prod_{n} a_{n}\right)^{-2} < \infty$$

Therefore, $\hat{M}_n \in L^2$, and by Doob's inequality (see Corollary 3.34),

$$E\left[\sup_{n\in\mathbb{N}}M_n\right] \le E\left[\sup_{n\in\mathbb{N}}\hat{M}_n^2\right] \le 4\sup_{n\in\mathbb{N}}E[\hat{M}_n^2] < \infty.$$

From Lebesgue convergence theorem $(|M_n - M_\infty| \le 2 \sup_{n \in \mathbb{N}} M_n \in L^1)$ we obtain convergence also in L^1 .

(d) Suppose that $\prod_n a_n = 0$. Then, from the *P*-a.s. convergence of $\hat{M}_n = \sqrt{M_n} / (\prod_{i=1}^n a_i)$ to an a.s. finite random variable $\hat{M}_{\infty} \in L^1$, it follows that $M_{\infty} = 0$ a.s.