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Probability Theory

Exercise Sheet 12

Exercise 12.1 Let X,,, n > 0, be a uniformly integrable submartingale and N a stopping time.
(a) Show that sup,, E[X},,] < sup, E[X;[] < cc.
(b) Show that Xy (where Xn1{y—oo} = I{n=oo} lim, X},) is integrable.
(¢) Show that Xnan, n > 0, is a uniformly integrable submartingale.
)

(d) Show that Xnan converges P-a.s. and in L' to Xy.

Exercise 12.2 Let (X,,),>0 be a uniformly integrable family of random variables on (12, A, P).

(a) Assume that X,, converges to a random variable X in distribution. Show that
E[X,] === E[X].
Remark: Compare to (3.6.18)—(3.6.20), p. 112 of the lecture notes.

(b) Assume that X,, converges to a random variable X in probability. Show that X € L! and
that X,, converges to X in L'.

Exercise 12.3 Azuma’s inequality. Let 0 = Xy, ..., X, be a martingale with | X;1; — X;| <1 for
all 0 <¢ < m. Let A > 0 be arbitrary.

1) (2)
(a) Show that E[e®®i—Xi-1)|X, 1, X; 5, ..., Xo] < cosha < /2.

Hint: For (1) use that for y € [~1,1], eM < ehr;_k + yeA*;_A. Inequality (2) follows from
the series expansion of cosh a.

(b) Show that E[e®Xm] < e’m/2.

(¢) Show that P [X,, > Ay/m| < e N2,

Submission: until 12:00, Dec. 15, through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.
Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.
Exercise sheets and further information are also available on:

https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 12.1

(a) Define Hy = 1yy<gy. Since H is predictable, (H - X), = X, — Xna, is a submartingale.
Hence, for any n > 0,

0= B[(H - X)o] < BI(H - X),] = E[X,] = E[Xn ]
This holds for any submartingale. Since X is also a submartingale and n is arbitrary,

sup E[X]J{,An] <sup E[X,] < o,

where the last inequality follows from the uniform integrability.
(b) From (a) and the martingale convergence theorem, Xyp, — Xy P-a.s. and E[|Xn|] < oc.

(¢) Xnan is submartingale follows from the optional stopping theorem. Finally,

E |XNAn1{XNM>K}] =F |:|XN|1{XN|>K}1{N<W}:| +E [an|1{Xn|>K}1{N>”}:|

<E |:|XN|1{XN|>K}:| +E |:|Xn|1{|Xn|>K}:| )
so the uniform integrability follows directly from the uniform integrability of X.

(d) From the solution of part (b) we have that Xy, converges P-a.s. to Xy. From (c) we
also know that Xya, is uniformly integrable. Then, using Proposition 3.41 on p. 111 of the
Lecture Notes, we conclude that Xy, converges to Xy in L.

Solution 12.2

(a) Since X, 27% X in distribution, we know by Proposition 2.7, p. 50 of the lecture notes

that one can construct random variables Y,,, n > 0, and Y on a common probability space
(Q, A’ P"), such that Y, 4 X,, foralln>0,Y 4 X, and Y,, — Y, P'-almost surely. It is
easy to verify that the family {Y,,},>0 is also uniformly integrable, since

v, Lx
li Ep ||V, 11 =X g E[Xl ]:0.
Mgnmf,li% P | 1Yoy, > M) Mlglmiglg P Xnll{x,1>0m)

Using Fatou’s Lemma, we obtain

Bp(IX]) = Ep V1) < imint Bp (Y]] € M +swp Br [Wallyoan] ()
<M + €< +o0. )
Therefore Y € L*(€, A’, P"). So by (3.6.18)-(3.6.19), p. 112 of the lecture notes, we have
Ep/[Y,] 225 Epi]Y],
and the result follows since Ep[X,] = Ep/[Y,], for all n > 0, and Ep[X]| = Ep/[Y].
(b) Since convergence in probability implies convergence in distribution, we can construct Y,,, for
n > 1, and Y defined on (€, A", P’) such that Y, converges to Y € L*(Q, A’, P') P’-almost

surely, as in (a). Consider an arbitrary e > 0. Since the family {Y,, },,>0 is uniformly integrable
(see (a) again), there exists M € R such that sup,,~q Ep/[|Ya|l{)y, >3] < € Analogously to
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(1) in (a), Fatou’s lemma gives Ep[|X|1{ x|>a}] < €. Moreover, by convergence in probability,

there exists ng > 0 such that, for all n > ng, we have

€

P[Xn—X > } -

| EXIRSY;
An

Hence, for all n > ng, we obtain

Ep[|Xn — X|] < Ep[|Xn — X|1{x, <0, x| <M}

+ Ep[|Xn — X1qx, s 1 xa 2 ixy ] + Ep[|Xn — X11(x15>m 1 x 12X,

< Ep[|Xy — X|1qx, <M, x1< M)
+ 2 Ep[|X,|1qx, >0} T2 Ep[| X1 x> 03]

<e <e
< Bp[|Xn — X|1gx,j<m |x|<my 1a,]
<oM
+ Ep [ |Xn — X|1gx, j<a x|<my Lag] + 4e
<e

< 2MP[A,] + 5¢ < Te.
Therefore, X,, converges to X in L.

Solution 12.3

(a) Let V; = X; — X;—1 with |V;] <1 and E[Y;|X;—1,X;_9,...,X0] =0. We can then show that

) (2

E[e"*|X;1, Xia,..., Xo] < coshar < /2,

(1): For any y € [-1,1],

PP A oA
a oo € +e et —e
T YT
(2): We expand cosh « to obtain

2k 2k
o « « B a2/2
coshafz 25)! §Z—2kk! =e .

k>0 k>0

(b) It follows from (a) that

E {eO‘X"‘} =F ﬁeo‘y"'
i=1

m—1
—E Yo | B {anm Xpn 1 Xom2s .-
i=1
_mfl
<E ani €a2/2 < ea2m/2.
i=1

aXO
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(¢) With o = , it follows from (b) that

3

P[Xy > A\m] =P [eaxm > eawﬂ

<FE [eo‘Xm} emoAVm

< ea2m/27a)\\/ﬁ _ €7>\2/2
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