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Exercise 12.1 Let Xn, n ≥ 0, be a uniformly integrable submartingale and N a stopping time.

(a) Show that supnE[X+
N∧n] ≤ supnE[X+

n ] <∞.

(b) Show that XN (where XN1{N=∞} = 1{N=∞} limnXn) is integrable.

(c) Show that XN∧n, n ≥ 0, is a uniformly integrable submartingale.

(d) Show that XN∧n converges P -a.s. and in L1 to XN .

Exercise 12.2 Let (Xn)n≥0 be a uniformly integrable family of random variables on (Ω,A, P ).

(a) Assume that Xn converges to a random variable X in distribution. Show that

E[Xn] n→∞−−−−→ E[X].

Remark: Compare to (3.6.18)–(3.6.20), p. 112 of the lecture notes.

(b) Assume that Xn converges to a random variable X in probability. Show that X ∈ L1 and
that Xn converges to X in L1.

Exercise 12.3 Azuma’s inequality. Let 0 = X0, . . . , Xm be a martingale with |Xi+1 −Xi| ≤ 1 for
all 0 ≤ i < m. Let λ > 0 be arbitrary.

(a) Show that E[eα(Xi−Xi−1)|Xi−1, Xi−2, . . . , X0]
(1)
≤ coshα

(2)
≤ eα

2/2.

Hint: For (1) use that for y ∈ [−1, 1], eλy ≤ eλ+e−λ
2 + y e

λ−e−λ
2 . Inequality (2) follows from

the series expansion of coshα.

(b) Show that E[eαXm ] ≤ eα2m/2.

(c) Show that P
[
Xm > λ

√
m
]
< e−λ

2/2.

————————————————————————————————————————————

Submission: until 12:00, Dec. 15, through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.
Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 12.1

(a) Define Hk = 1{N<k}. Since H is predictable, (H · X)n = Xn − XN∧n is a submartingale.
Hence, for any n ≥ 0,

0 = E[(H ·X)0] ≤ E[(H ·X)n] = E[Xn]− E[XN∧n].

This holds for any submartingale. Since X+ is also a submartingale and n is arbitrary,

sup
n
E[X+

N∧n] ≤ sup
n
E[X+

n ] <∞,

where the last inequality follows from the uniform integrability.

(b) From (a) and the martingale convergence theorem, XN∧n → XN P -a.s. and E[|XN |] <∞.

(c) XN∧n is submartingale follows from the optional stopping theorem. Finally,

E

[
|XN∧n|1{|XN∧n|>K}

]
= E

[
|XN |1{|XN |>K}1{N≤n}

]
+ E

[
|Xn|1{|Xn|>K}1{N>n}

]
≤ E

[
|XN |1{|XN |>K}

]
+ E

[
|Xn|1{|Xn|>K}

]
,

so the uniform integrability follows directly from the uniform integrability of X.

(d) From the solution of part (b) we have that XN∧n converges P -a.s. to XN . From (c) we
also know that XN∧n is uniformly integrable. Then, using Proposition 3.41 on p. 111 of the
Lecture Notes, we conclude that XN∧n converges to XN in L1.

Solution 12.2

(a) Since Xn
n→∞−−−−→ X in distribution, we know by Proposition 2.7, p. 50 of the lecture notes

that one can construct random variables Yn, n ≥ 0, and Y on a common probability space
(Ω′,A′, P ′), such that Yn

d= Xn, for all n ≥ 0, Y d= X, and Yn → Y , P ′-almost surely. It is
easy to verify that the family {Yn}n≥0 is also uniformly integrable, since

lim
M→∞

sup
n≥0

EP ′
[
|Yn|1{|Yn|>M}

]
Yn

d=Xn= lim
M→∞

sup
n≥0

EP

[
|Xn|1{|Xn|>M}

]
= 0.

Using Fatou’s Lemma, we obtain

EP [|X|] = EP ′ [|Y |]
Fatou
≤ lim inf

n→∞
EP ′ [|Yn|] ≤M + sup

n≥0
EP ′

[
|Yn|1{|Yn|≥M}

]
(1)

≤M + ε < +∞.

Therefore Y ∈ L1(Ω′,A′, P ′). So by (3.6.18)-(3.6.19), p. 112 of the lecture notes, we have

EP ′ [Yn] n→∞−−−−→ EP ′ [Y ],

and the result follows since EP [Xn] = EP ′ [Yn], for all n ≥ 0, and EP [X] = EP ′ [Y ].

(b) Since convergence in probability implies convergence in distribution, we can construct Yn, for
n ≥ 1, and Y defined on (Ω′,A′, P ′) such that Yn converges to Y ∈ L1(Ω′,A′, P ′) P ′-almost
surely, as in (a). Consider an arbitrary ε > 0. Since the family {Yn}n≥0 is uniformly integrable
(see (a) again), there exists M ∈ R such that supn≥0 EP ′ [|Yn|1{|Yn|>M}] ≤ ε. Analogously to
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(1) in (a), Fatou’s lemma gives EP [|X|1{|X|>M}] ≤ ε. Moreover, by convergence in probability,
there exists n0 ≥ 0 such that, for all n ≥ n0, we have

P
[
|Xn −X| ≥ ε︸ ︷︷ ︸

An

]
<

ε

M
.

Hence, for all n ≥ n0, we obtain

EP [|Xn −X|] ≤ EP
[
|Xn −X|1{|Xn|≤M,|X|≤M}

]
+ EP

[
|Xn −X|1{|Xn|>M}1{|Xn|≥|X|}

]
+ EP

[
|Xn −X|1{|X|>M}1{|X|≥|Xn|}

]
≤ EP

[
|Xn −X|1{|Xn|≤M,|X|≤M}

]
+ 2EP

[
|Xn|1{|Xn|>M}

]︸ ︷︷ ︸
≤ε

+2EP
[
|X|1{|X|>M}

]︸ ︷︷ ︸
≤ε

≤ EP
[
|Xn −X|1{|Xn|≤M,|X|≤M}︸ ︷︷ ︸

≤2M

1An
]

+ EP
[
|Xn −X|1{|Xn|≤M,|X|≤M}︸ ︷︷ ︸

≤ε

1Acn
]

+ 4ε

≤ 2MP [An] + 5ε ≤ 7ε.

Therefore, Xn converges to X in L1.

Solution 12.3

(a) Let Yi = Xi −Xi−1 with |Yi| ≤ 1 and E[Yi|Xi−1, Xi−2, . . . , X0] = 0. We can then show that

E[eαXi |Xi−1, Xi−2, . . . , X0]
(1)
≤ coshα

(2)
≤ eα

2/2.

(1): For any y ∈ [−1, 1],

eλy ≤ eλ + e−λ

2 + y
eλ − e−λ

2 .

(2): We expand coshα to obtain

coshα =
∑
k≥0

α2k

(2k)! ≤
∑
k≥0

α2k

2kk! = eα
2/2.

(b) It follows from (a) that

E
[
eαXm

]
= E

 m∏
i=1

eαYi


= E


m−1∏

i=1
eαYi

E
[
eαYm |Xm−1, Xm−2, . . . , X0

]
≤ E

m−1∏
i=1

eαYi

 eα2/2 ≤ eα
2m/2.
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(c) With α = λ√
m
, it follows from (b) that

P [Xm > λ
√
m] = P

[
eαXm > eαλ

√
m
]

< E
[
eαXm

]
e−αλ

√
m

≤ eα
2m/2−αλ

√
m = e−λ

2/2.
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