Probability Theory

Exercise Sheet 12

Exercise 12.1 Let X_n , $n \ge 0$, be a uniformly integrable submartingale and N a stopping time.

- (a) Show that $\sup_n E[X_{N \wedge n}^+] \leq \sup_n E[X_n^+] < \infty$.
- (b) Show that X_N (where $X_N \mathbb{1}_{\{N=\infty\}} = \mathbb{1}_{\{N=\infty\}} \lim_{n \to \infty} X_n$) is integrable.
- (c) Show that $X_{N \wedge n}$, $n \ge 0$, is a uniformly integrable submartingale.
- (d) Show that $X_{N \wedge n}$ converges *P*-a.s. and in L^1 to X_N .

Exercise 12.2 Let $(X_n)_{n\geq 0}$ be a uniformly integrable family of random variables on (Ω, \mathcal{A}, P) .

(a) Assume that X_n converges to a random variable X in distribution. Show that

$$E[X_n] \xrightarrow{n \to \infty} E[X].$$

Remark: Compare to (3.6.18)–(3.6.20), p. 112 of the lecture notes.

(b) Assume that X_n converges to a random variable X in probability. Show that $X \in L^1$ and that X_n converges to X in L^1 .

Exercise 12.3 Azuma's inequality. Let $0 = X_0, \ldots, X_m$ be a martingale with $|X_{i+1} - X_i| \le 1$ for all $0 \le i < m$. Let $\lambda > 0$ be arbitrary.

- (a) Show that $E[e^{\alpha(X_i-X_{i-1})}|X_{i-1},X_{i-2},\ldots,X_0] \stackrel{(1)}{\leq} \cosh \alpha \stackrel{(2)}{\leq} e^{\alpha^2/2}$. *Hint:* For (1) use that for $y \in [-1,1]$, $e^{\lambda y} \leq \frac{e^{\lambda}+e^{-\lambda}}{2} + y \frac{e^{\lambda}-e^{-\lambda}}{2}$. Inequality (2) follows from the series expansion of $\cosh \alpha$.
- (b) Show that $E[e^{\alpha X_m}] \leq e^{\alpha^2 m/2}$.
- (c) Show that $P\left[X_m > \lambda \sqrt{m}\right] < e^{-\lambda^2/2}$.
- Submission: until 12:00, Dec. 15, through the webpage of the course. You should carefully follow the submission instructions on the webpage to get your solutions back.
- **Office hours:** Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation. Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on: https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/

Solution 12.1

(a) Define $H_k = 1_{\{N < k\}}$. Since H is predictable, $(H \cdot X)_n = X_n - X_{N \wedge n}$ is a submartingale. Hence, for any $n \ge 0$,

 $0 = E[(H \cdot X)_0] \le E[(H \cdot X)_n] = E[X_n] - E[X_{N \wedge n}].$

This holds for any submartingale. Since X^+ is also a submartingale and n is arbitrary,

$$\sup_{n} E[X_{N \wedge n}^+] \le \sup_{n} E[X_n^+] < \infty,$$

where the last inequality follows from the uniform integrability.

- (b) From (a) and the martingale convergence theorem, $X_{N \wedge n} \to X_N$ *P*-a.s. and $E[|X_N|] < \infty$.
- (c) $X_{N \wedge n}$ is submartingale follows from the optional stopping theorem. Finally,

$$E\left[|X_{N\wedge n}|1_{\{|X_{N\wedge n}|>K\}}\right] = E\left[|X_{N}|1_{\{|X_{N}|>K\}}1_{\{N\leq n\}}\right] + E\left[|X_{n}|1_{\{|X_{n}|>K\}}1_{\{N>n\}}\right]$$
$$\leq E\left[|X_{N}|1_{\{|X_{N}|>K\}}\right] + E\left[|X_{n}|1_{\{|X_{n}|>K\}}\right],$$

so the uniform integrability follows directly from the uniform integrability of X.

(d) From the solution of part (b) we have that $X_{N \wedge n}$ converges *P*-a.s. to X_N . From (c) we also know that $X_{N \wedge n}$ is uniformly integrable. Then, using Proposition 3.41 on p. 111 of the Lecture Notes, we conclude that $X_{N \wedge n}$ converges to X_N in L_1 .

Solution 12.2

(a) Since $X_n \xrightarrow{n \to \infty} X$ in distribution, we know by Proposition 2.7, p. 50 of the lecture notes that one can construct random variables Y_n , $n \ge 0$, and Y on a common probability space $(\Omega', \mathcal{A}', P')$, such that $Y_n \stackrel{d}{=} X_n$, for all $n \ge 0$, $Y \stackrel{d}{=} X$, and $Y_n \to Y$, P'-almost surely. It is easy to verify that the family $\{Y_n\}_{n\ge 0}$ is also uniformly integrable, since

$$\lim_{M \to \infty} \sup_{n \ge 0} E_{P'} \left[|Y_n| \mathbf{1}_{\{|Y_n| > M\}} \right] \stackrel{Y_n \stackrel{d}{=} X_n}{=} \lim_{M \to \infty} \sup_{n \ge 0} E_P \left[|X_n| \mathbf{1}_{\{|X_n| > M\}} \right] = 0.$$

Using Fatou's Lemma, we obtain

$$E_P[|X|] = E_{P'}[|Y|] \stackrel{\text{Fatou}}{\leq} \liminf_{n \to \infty} E_{P'}[|Y_n|] \leq M + \sup_{n \geq 0} E_{P'}[|Y_n| \mathbb{1}_{\{|Y_n| \geq M\}}]$$
(1)
$$\leq M + \epsilon < +\infty.$$

Therefore $Y \in L^1(\Omega', \mathcal{A}', P')$. So by (3.6.18)-(3.6.19), p. 112 of the lecture notes, we have

$$E_{P'}[Y_n] \xrightarrow{n \to \infty} E_{P'}[Y]$$

and the result follows since $E_P[X_n] = E_{P'}[Y_n]$, for all $n \ge 0$, and $E_P[X] = E_{P'}[Y]$.

(b) Since convergence in probability implies convergence in distribution, we can construct Y_n , for $n \ge 1$, and Y defined on $(\Omega', \mathcal{A}', P')$ such that Y_n converges to $Y \in L^1(\Omega', \mathcal{A}', P')$ P'-almost surely, as in (a). Consider an arbitrary $\epsilon > 0$. Since the family $\{Y_n\}_{n\ge 0}$ is uniformly integrable (see (a) again), there exists $M \in \mathbb{R}$ such that $\sup_{n\ge 0} E_{P'}[|Y_n|\mathbf{1}_{\{|Y_n|>M\}}] \le \epsilon$. Analogously to

2/4

(1) in (a), Fatou's lemma gives $E_P[|X|1_{\{|X|>M\}}] \leq \epsilon$. Moreover, by convergence in probability, there exists $n_0 \geq 0$ such that, for all $n \geq n_0$, we have

$$P\left[\underbrace{|X_n - X| \ge \epsilon}_{A_n}\right] < \frac{\epsilon}{M}.$$

Hence, for all $n \ge n_0$, we obtain

$$\begin{split} E_{P}[|X_{n} - X|] &\leq E_{P}\left[|X_{n} - X|1_{\{|X_{n}| \leq M, |X| \leq M\}}\right] \\ &+ E_{P}\left[|X_{n} - X|1_{\{|X_{n}| > M\}}1_{\{|X_{n}| \geq |X|\}}\right] + E_{P}\left[|X_{n} - X|1_{\{|X| > M\}}1_{\{|X| \geq |X_{n}|\}}\right] \\ &\leq E_{P}\left[|X_{n} - X|1_{\{|X_{n}| \leq M, |X| \leq M\}}\right] \\ &+ 2\underbrace{E_{P}\left[|X_{n}|1_{\{|X_{n}| > M\}}\right]}_{\leq \epsilon} + 2\underbrace{E_{P}\left[|X|1_{\{|X_{n}| \leq M, |X| \leq M\}}\right]}_{\leq \epsilon} \\ &\leq E_{P}\left[\underbrace{|X_{n} - X|1_{\{|X_{n}| \leq M, |X| \leq M\}}}_{\leq 2M} 1_{A_{n}}\right] \\ &+ E_{P}\left[\underbrace{|X_{n} - X|1_{\{|X_{n}| \leq M, |X| \leq M\}}}_{\leq \epsilon} 1_{A_{n}^{c}}\right] + 4\epsilon \\ &\leq 2MP[A_{n}] + 5\epsilon \leq 7\epsilon. \end{split}$$

Therefore, X_n converges to X in L^1 .

Solution 12.3

(a) Let $Y_i = X_i - X_{i-1}$ with $|Y_i| \le 1$ and $E[Y_i|X_{i-1}, X_{i-2}, ..., X_0] = 0$. We can then show that

$$E[e^{\alpha X_i}|X_{i-1}, X_{i-2}, \dots, X_0] \stackrel{(1)}{\leq} \cosh \alpha \stackrel{(2)}{\leq} e^{\alpha^2/2}.$$

(1): For any $y \in [-1, 1]$,

$$e^{\lambda y} \leq \frac{e^{\lambda} + e^{-\lambda}}{2} + y \frac{e^{\lambda} - e^{-\lambda}}{2}.$$

(2): We expand $\cosh \alpha$ to obtain

$$\cosh \alpha = \sum_{k \ge 0} \frac{\alpha^{2k}}{(2k)!} \le \sum_{k \ge 0} \frac{\alpha^{2k}}{2^k k!} = e^{\alpha^2/2}.$$

(b) It follows from (a) that

$$E\left[e^{\alpha X_m}\right] = E\left[\prod_{i=1}^m e^{\alpha Y_i}\right]$$
$$= E\left[\left(\prod_{i=1}^{m-1} e^{\alpha Y_i}\right) E\left[e^{\alpha Y_m} | X_{m-1}, X_{m-2}, \dots, X_0\right]\right]$$
$$\leq E\left[\prod_{i=1}^{m-1} e^{\alpha Y_i}\right] e^{\alpha^2/2} \leq e^{\alpha^2 m/2}.$$

3 / 4

(c) With $\alpha = \frac{\lambda}{\sqrt{m}}$, it follows from (b) that

$$P[X_m > \lambda \sqrt{m}] = P\left[e^{\alpha X_m} > e^{\alpha \lambda \sqrt{m}}\right]$$
$$< E\left[e^{\alpha X_m}\right] e^{-\alpha \lambda \sqrt{m}}$$
$$\le e^{\alpha^2 m/2 - \alpha \lambda \sqrt{m}} = e^{-\lambda^2/2}.$$