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Definition: Let (Ω,F , (Px)x∈E) be a canonical (time-homogenous) Markov chain with a countable
state space E, a transition kernel K, and canonical coordinates (Xn)n≥0. The matrix

Q = (Q(x, y))x,y∈E := (K(x, {y}))x,y∈E = (Px[X1 = y])x,y∈E

is then called the transition matrix of the Markov chain. For the meanings of notation Px and
transition kernel we refer to p. 145 in lecture notes.

Exercise 13.1 Let (Ω,F , (Px)x∈E) be a canonical time–homogeneous Markov chain with a
countable state space E, canonical coordinate process (Xn)n≥0 and transition kernel K. Let A ⊂ E
and τA the first entrance time of A, i.e., τA := inf{n ≥ 0 |Xn ∈ A}. Suppose that there exists
n ≥ 1 and α > 0 such that for all x ∈ Ac,

Px[Xn ∈ A] =
∑
a∈A

Px[Xn = a] ≥ α.

Show that for all x ∈ E we have that Px(τA < +∞) = 1.

Exercise 13.2 Let E be a countable set, (S,S) a measurable space, (Yn)n≥1 a sequence of
i.i.d. S-valued random variables. We define a sequence (Zn)n≥0 through Z0 = x ∈ E and
Zn+1 = Φ(Zn, Yn+1), where Φ : E × S → E is a measurable map. Find a transition kernel K on E
such that the canonical law Px with transition kernel K has the same law as (Zn)n≥0 (hence (Zn)n≥0
induces a time-homogenous Markov chain with transition kernel K). Calculate the corresponding
transition matrix.

Exercise 13.3 (Probabilistic solution to the Dirichlet problem).
Consider (Xn)n≥0 the canonical Markov chain on Zd with transition kernel

K(x, dy) = 1
2d

∑
e∈Zd:|e|=1

δx+e(dy),

corresponding to the simple random walk on Zd. Let U 6= ∅ be a finite subset of Zd.

(a) If TU = inf{n ≥ 0;Xn 6∈ U} stands for the exit time of U , show that for all x ∈ Zd, Px-a.s.,
TU <∞.
Hint: Show that Mn =

∑
1≤i≤dXn · ei, n ≥ 0 (with e1, . . . , ed the canonical basis of Zd) is a

martingale with bounded increments and use Exercise 10.3.

(b) Let g be a bounded function on Zd \ U . If f : Zd → R solves the Dirichlet problem

(∗)
{

1
2d
∑
y:|y−x|=1 f(y) = f(x), for x ∈ U,

f(x) = g(x), for x 6∈ U.
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Show that necessarily f(x) = Ex[g(XTU
)] for all x ∈ Zd.

Hint: Use the martingale (4.2.58) in the lecture notes and the Optional Stopping Theorem.

(c) Show, without using (b), that the function f(x) = Ex[g(XTU
)], x ∈ Zd solves (∗).

Hint: distinguish the cases x 6∈ U and x ∈ U . When x ∈ U note that Px-a.s., g(XTU
) =

g(XTU
) ◦ θ1 and use the Markov property (4.2.55).

————————————————————————————————————————————

Submission: until 12:00, Dec. 22, through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.
Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L/
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Solution 13.1 Let x ∈ A, τA = 0 Px-a.s. For x ∈ Ac, we have that for all k ≥ 0,

Px(τA > (k + 1)n) ≤ Px(τA > kn,X(k+1)n ∈ Ac) = Ex[Ex[1{τA>kn}1{X(k+1)n∈Ac}|Fnk]]
Markov= Ex[1{τA>kn} PXkn

[Xn ∈ Ac]︸ ︷︷ ︸
≤1−α

] ≤ (1− α)Px(τA > kn).

From the last we get by induction that Px(τA > kn) ≤ (1− α)k and taking the limit as k goes to
infinity we get that,

Px(τA = +∞) = lim
k→∞

Px(τA > kn) = 0.

Solution 13.2 Define for each x, y ∈ E, K(x, {y}) := P [Φ(x, Y1) = y]. Consider the probability
measure Px = Pδx

on EN as in (4.2.53) on p. 144 in lecture notes with transitional kernel K and
initial distribution µ := δx, where δ denotes the Dirac-delta function. (Note that the existence of
Px is provided by Ionescu-Tulcea theorem). We need to show that Px has the same law as (Zn)n≥0.

It is sufficient to show that for any n ≥ 0 and bounded functions f0, f1, . . . , fn : E → R,

E[f0(Z0)f1(Z1) . . . fn(Zn)] = EPx [f0(X0)f1(X1) . . . fn(Xn)], (1)

where (Xn)n≥0 is the canonical coordinate process on E, i.e. for each n ≥ 0 and e = (e1, e2, . . . , en),
Xn(e) = en. We are going to use induction. For n = 0, Z0 = x and X0 = x Px-a.s. (cf. (4.2.53)),
hence E[f0(Z0)] = f0(x) = E[f0(X0)]. For the induction step, fix n > 1 and assume that (1)
holds for n. For any f : E → R, define Kf(x) :=

∑
e∈E K(x, {e})f(e) and note that by the i.i.d.

property of (Yn)n≥1, for each n ≥ 0 we have

E
[
f
(
Φ(Zn+1)

)
|σ(Z0, . . . , Zn)

]
= E

[
f
(
Φ(Zn, Yn+1)

)
|σ(Z0, . . . , Zn)

]
=
∑
z∈E

∑
e∈E

P [Φ(z, Yn+1) = e]f(e)1{Zn=z}

=
∑
z∈E

Kf(z)1{Zn=z} = Kf(Zn).

Hence with f ′n := fnKfn+1 it follows for the LHS of (1) that

E[f0(Z0)f1(Z1) . . . fn+1(Zn+1)] = E
[
f0(Z0)f1(Z1) . . . fn(Zn)E

[
fn+1(Zn+1)|σ(Z0, . . . , Zn)

]]
= E

[
f0(Z0)f1(Z1) . . . fn(Zn)Kfn+1(Zn)

]
= E

[
f0(Z0)f1(Z1) . . . fn−1(Zn−1)f ′n(Zn)

]
.

For the RHS of (1), we obtain by (4.2.53)

EPx [f0(X0)f1(X1) . . . fn+1(Xn+1)] = EPx
[
f0(X0)f1(X1) . . . fn(Xn)Kfn+1(Xn)

]
= EPx

[
f0(X0)f1(X1) . . . fn−1(Xn−1)f ′n(Xn)

]
,

and hence (1) for n+ 1 follows from the induction hypothesis.
This shows that (Zn)n≥0 is a time homogeneous Markov chain and the transition matrix is

given through

Q(x, y) = Px[X1 = y] = EPx

[
E[1{X1=y}|F0]

]
= P [Φ(x, Y1) = y].

We remark that the time homogeneity of (Xn)n≥0 follows from the observation that for all n ≥ 0
and x, y ∈ E,

P [Xn+1 = y|Xn = x] = P [X1 = y|X0 = x] = Q(x, y).

Solution 13.3
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(a) Notice that Mn is Fn-adapted, where Fn = σ(X0, . . . , Xn), n ≥ 0. Also, since for all x, Xn

is Px-integrable we have that Mn also is. By the definition of the canonical Markov chain
(4.2.53) and the Markov property in the form (4.2.55), we have that for n ≥ 0

Ex[Mn+1|Fn] = EPXn

 ∑
1≤i≤d

X1 · ei


=
∑

1≤i≤d

(
1
2d

∑
e∈Zd:|e|=1

(Xn + e) · ei
)

=
∑

1≤i≤d

(
Xn · ei + 1

2d

∑
e∈Zd:|e|=1

ei︸ ︷︷ ︸
=0

)
= Mn

which means that Mn is a martingale. It is clear that for all n ≥ 0, |Mn −Mn+1| = 1, and by
Exercise 10.3 we have that Px-a.s. (Mn)n≥0 is either converging to a finite limit, or it visits
infinitely often +∞ and −∞. Since |Mn−Mn+1| = 1, we have that the limit cannot be finite.
Therefore, Px-a.s. lim supMn = +∞ or lim inf Mn = −∞. Since U is finite, this implies that
TU <∞ Px-a.s.

(b) Let f be a solution of (∗). Since U is finite and g is bounded, we have that f is bounded. Let
x ∈ Zd and µ = δx. By Proposition 4.34. of the lecture notes, the process

Mn = f(Xn)−
n−1∑
k=0

(Kf − f)(Xk), n ≥ 1

M0 = f(X0)

is a martingale with respect to to the measure Pµ = Px. By the Optional Stopping Theorem,
we know that (Mn∧TU

)n≥0 is also a martingale in the same probability space. Then

f(x) = Ex[f(X0)] = Ex[Mn∧TU
].

Since TU < ∞, Px-a.s. we have that Mn∧TU
converges Px-a.s. to MTU

as n → ∞. Also,
since f is bounded, Mn is bounded. By the dominated convergence theorem, we have that
Ex[Mn∧TU

] → Ex[MTU
]. Then, it remains to prove that Ex[MTU

] = Ex[g(XTU
)], which is

equivalent to show that

Ex

TU−1∑
k=0

(Kf − f)(Xk)

 = 0. (2)

Let us observe that for every z ∈ U

Kf(z) =
∫
Zd

f(y)K(z, dy) =
∫
Zd

f(y) 1
2d

∑
e∈Zd:|e|=1

δz+e(dy)

= 1
2d

∑
e∈Zd:|e|=1

f(z + e) = f(z)

where the last equality comes from the fact that f solves (∗). Therefore (Kf − f) is constant
equal 0 on U . Since Xk ∈ U for 0 ≤ k ≤ TU − 1, we have that (2) is satisfied.

(c) Let us observe that if x 6∈ U , then TU = 0 and f(x) = Ex[g(X0)] = g(x). Now, if x ∈ U , we
have that there exists A ⊂ Ω with Px(A) = 1 such that TU (ω) < ∞ for all ω ∈ A. Let us
pick ω = (x, x1, x2, . . .). Since x ∈ U , there exists k = k(ω) finite such that 1 ≤ TU (ω) = k.
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Thus XTU (ω) = xk. On the other hand, θ1(ω) = (x1, x2, . . .), TU (θ1(ω)) is also equal to k and
XTU (θ1(ω)) = xk. This implies that g(XTU

) = g(XTU
) ◦ θ1 Px-a.s.. Using the Markov property

(4.2.55) we get

f(x) = Ex[g(XTU
)] = Ex[g(XTU

) ◦ θ1]
(tower property) = Ex[Ex[g(XTU

) ◦ θ1 | X1]]
(Markov property) = Ex[EPX1 [g(XTU

)]]
= Ex[f(X1)]

=
∫
Zd

δx(dx0)
∫
Zd

K(x0, dx1)f(x1)

= 1
2d

∑
e∈Zd:|e|=1

f(x+ e)

which is exactly the first condition in (∗).
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