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Probability Theory

Exercise Sheet 13

Definition: Let (Q, F, (P;)zcr) be a canonical (time-homogenous) Markov chain with a countable
state space E, a transition kernel K, and canonical coordinates (X,,)n>0. The matrix

Q= (Q@,y))eyer = (K, {y}))eyer = (Pe[X1 = Y])ayer

is then called the transition matriz of the Markov chain. For the meanings of notation P, and
transition kernel we refer to p. 145 in lecture notes.

Exercise 13.1 Let (Q,F,(Py)ser) be a canonical time-homogeneous Markov chain with a
countable state space E, canonical coordinate process (X, ), >0 and transition kernel K. Let A C E
and 74 the first entrance time of A, i.e., 74 := inf{n > 0| X,, € A}. Suppose that there exists
n > 1 and a > 0 such that for all x € A€,

P.[X, € Al = Z P.[X, =a] > a.
acA

Show that for all € E we have that P,(14 < +00) = 1.

Exercise 13.2 Let E be a countable set, (5,S) a measurable space, (Y,,)n,>1 & sequence of
iid. S-valued random variables. We define a sequence (Z,),>0 through Zy = = € E and
Zns1 = 9(Zy, Yni1), where @ : E X S — F is a measurable map. Find a transition kernel K on F
such that the canonical law P, with transition kernel K has the same law as (Z,,),,>0 (hence (Z,,)n>0
induces a time-homogenous Markov chain with transition kernel K). Calculate the corresponding
transition matrix.

Exercise 13.3 (Probabilistic solution to the Dirichlet problem).
Consider (X,,),>0 the canonical Markov chain on Z? with transition kernel

1
K(.dy) =55 > Oareldy),
e€Z:|e|=1
corresponding to the simple random walk on Z?. Let U # () be a finite subset of Z?.

(a) If Ty = inf{n > 0; X,, € U} stands for the exit time of U, show that for all z € Z¢, P,-a.s.,
Ty < 0.

Hint: Show that M, =3, .., Xn-€;, n >0 (with e1,...,eq the canonical basis of 7%) is a
martingale with bounded increments and use Exercise 10.3.

(b) Let g be a bounded function on Z¢\ U. If f : Z% — R solves the Dirichlet problem

(+) {2101 Yyily—ai=1 [ W) = f(z), forzel,
f(x):g(x)v fOI'LEgU.
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Show that necessarily f(x) = E.[g(X1,)] for all z € Z4.
Hint: Use the martingale (4.2.58) in the lecture notes and the Optional Stopping Theorem.

¢) Show, without using (b), that the function f(z) = E.[g(Xr,)], z € Z% solves (x).
U

Hint: distinguish the cases © ¢ U and © € U. When z € U note that P-a.s., g(Xr,) =
g9(X1,) 061 and use the Markov property (4.2.55).

Submission: until 12:00, Dec. 22, through the webpage of the course. You should carefully follow
the submission instructions on the webpage to get your solutions back.

Office hours: Tue. 15:30-16:30 and Wed. 11:00-12:00 via Zoom with a 10 minutes slot reservation.
Organized by the Probability Theory assistants.

Exercise class: Online. Details can be found on the polybox folder of the course.

Exercise sheets and further information are also available on:
https://metaphor.ethz.ch/x/2020/hs/401-3601-00L /
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Solution 13.1 Let z € A, 74 = 0 P.-a.s. For x € A°, we have that for all k > 0,

PI(TA > (k+ 1)77,) < Pw(TA > kn X(k+1)n € AC) = Ez[Eac[1{TA>kn}l{X(kH)nGAC}']:nk]]

Markov 1 [rasiny Pxon [Xn € A9 < (1= @) Pe(7a > kn).
—_—

<l—-«
From the last we get by induction that P,(74 > kn) < (1 — a)* and taking the limit as k goes to

infinity we get that,
Py(T4 = +00) = klirn P.(t4 > kn) = 0.
—00

Solution 13.2 Define for each z,y € E, K(z,{y}) := P[®(z,Y1) = y]. Consider the probability

measure P, = P5, on EN as in (4.2.53) on p. 144 in lecture notes with transitional kernel K and

initial distribution p := d,, where § denotes the Dirac-delta function. (Note that the existence of

P, is provided by Ionescu-Tulcea theorem). We need to show that P, has the same law as (Z,),>0.
It is sufficient to show that for any n > 0 and bounded functions fo, f1,...,fn : E — R,

Elfo(Zo)f1(Z1) ... fu(Za)] = B[ fo(Xo) f1(X1) ... fu(Xn)], (1)

where (X,,)n>0 is the canonical coordinate process on E, i.e. for each n > 0 and e = (e, e, .., ¢€y,),
X, (e) = e,. We are going to use induction. For n =0, Zy = z and Xy = z P,-a.s. (cf. (4.2. 53))
hence E[fo(Zy)] = fo(x) = E[fo(Xo)]. For the induction step, fix n > 1 and assume that (1
holds for n. For any f: E — R, define K f(z) := > .5 K(z,{e})f(e) and note that by the i.i.d.
property of (Y;,)n>1, for each n > 0 we have

E [f ((I)( n+1)) |0'(Z0, ey Zn)] =E {f ((I)(Zna Y7L+1)) |U(ZO’ T Zn)
_ Z ZP 2, Ynt1) = elf(e)l{z,—z)

z€FE ecE

=Y Kf(2)l{z,—2) = Kf(Zy).

z€E
Hence with f] := f, K fn41 it follows for the LHS of (1) that

Elfo(Z) fi(Z1) .. fas1(Znsr)] = E [fo(zo)fl(zl) e FalZa)E [fuir (Zns)|o(Zo, ..., zn)]}
=E [fo(Zo)f1(Z1) ... fu(Zn)K frni1(Zn)]
=E [fo(Z0)[1(Z1) ... fo1(Zn-1) [1(Zy)] -
For the RHS of (1), we obtain by (4.2.53)
EP [fo(X0) f1(X1) - . frop1 (Xns1)] = EP* [fo(X0) f1(X1) . fu(Xn) K frg1 (Xn)]
=E" [fo(Xo) f1(X1) .- fae1(Xn—1) f1(X0)]

and hence (1) for n + 1 follows from the induction hypothesis.
This shows that (Z,),>0 is a time homogeneous Markov chain and the transition matrix is
given through

Qlz,y) = P:[X1 =y] = B [E[l{xl:y}\fo]] = P[®(z,Y1) = y].
We remark that the time homogeneity of (X,,),>¢ follows from the observation that for all n > 0

and x,y € F,

Solution 13.3
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(a)

Notice that M, is F,-adapted, where F,, = o(Xy,...,X,), n > 0. Also, since for all z, X,
is P,-integrable we have that M, also is. By the definition of the canonical Markov chain
(4.2.53) and the Markov property in the form (4.2.55), we have that for n > 0

EI[MH+1|.F”] = EPX" Z X1 c €5
1<i<d

% Y (Xnte)- ei>

1<i<d e€Zd:|e|=1

<Xn'€i+21d Z ei):Mn

ecZ:|e|=1

M M

=0

which means that M,, is a martingale. It is clear that for all n > 0, |M,, — M, 1| =1, and by
Exercise 10.3 we have that Pp-a.s. (M,),>0 is either converging to a finite limit, or it visits
infinitely often 400 and —oo. Since |M,, — M, 41| = 1, we have that the limit cannot be finite.
Therefore, P,-a.s. limsup M,, = +o0 or liminf M,, = —oc. Since U is finite, this implies that
Ty < oo Pp-a.s.

Let f be a solution of (x). Since U is finite and g is bounded, we have that f is bounded. Let
x € Z4 and pu = 6,. By Proposition 4.34. of the lecture notes, the process

z_:Kf HXk), n>1
k=0
My = f(Xo)

is a martingale with respect to to the measure P, = P,. By the Optional Stopping Theorem,
we know that (M1, )n>0 is also a martingale in the same probability space. Then

f(@) = Ex[f(Xo)] = Ex[Mnnry -

Since Ty < oo, Py-a.s. we have that M,,r, converges P,-a.s. to Mr, as n — co. Also,
since f is bounded, M, is bounded. By the dominated convergence theorem, we have that
E.[Mus1,] = Ez[Mr,]. Then, it remains to prove that E,[Mr,] = E.[g(X1, )], which is
equivalent to show that
Ty—1
B, | Y (Kf—=f)(Xk)| =0 (2)

k=0

Let us observe that for every z € U

K1) = [ 1Ky = / iy 5o e(dy)
eEZd| =1

1
2d Z fz+e) = f(z)

e€Z:|e|=1

where the last equality comes from the fact that f solves (x). Therefore (K f — f) is constant
equal 0 on U. Since X € U for 0 < k < Ty — 1, we have that (2) is satisfied.

Let us observe that if € U, then Ty = 0 and f(z) = E,[g(X0)] = g(z). Now, if z € U, we
have that there exists A C Q with P,(A) = 1 such that Ty (w) < oo for all w € A. Let us
pick w = (z,x1,z2,...). Since z € U, there exists k = k(w) finite such that 1 < Ty (w) = k.
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Thus X7, () = Zx. On the other hand, 61 (w) = (21,72, ...), Ty(#1(w)) is also equal to k and
X7y (6, (w)) = Zk- This implies that g(X7,) = g(X7,) 00 Pp-a.s.. Using the Markov property
(4.2.55) we get

I
&

f(x) = Egg9(X, )]
(tower property) =

2[9(X1y) © 04]

2 [Exg(X1y) 001 | Xi]]
[
[

tijtij

(Markov property) = Ey EPx [Q(XTU )]]

I
S

f(X1)]
0z (dxo) | K(xo,dx1)f(21)

d 7,d

> flate)

ecZ4:le|=1

x

Il
—

| —

2

=8

which is exactly the first condition in (x).
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