Mathematical Foundations for Finance

Exercise sheet 1

This sheet contains material which is fundamental for this course and assumed to be known. Please hand in your solutions until Wednesday, September 23, 12:00 via the course homepage.

Exercise 1.1 Let (Ω, \mathcal{F}, P) be the probability space with $\Omega := \{UU, UD, DD, DU\}$, $\mathcal{F} := 2^{\Omega}$ and P defined by $P[\omega] := 1/4$ for all $\omega \in \Omega$. Let $Y_1, Y_2 : \Omega \to \mathbb{R}$ be the random variables defined by $Y_1(UU) = Y_1(UD) := 2$, $Y_1(DD) = Y_1(DU) := 1/2$, $Y_2(UU) = Y_2(DU) := 2$ and $Y_2(DD) = Y_2(UD) := 1/2$. Define the process $X = (X_k)_{k=0,1,2}$ by

$$X_0(\omega) = 8$$
 for all $\omega \in \Omega$,

$$X_k(\omega) = X_0(\omega) \prod_{i=1}^k Y_i(\omega)$$
 for $k = 1, 2$.

- (a) Draw a picture to illustrate the possible evolutions and values of the process X.
- (b) Explicitly write down the sequences of σ -fields $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$ and $\mathbb{G} = (\mathcal{G}_k)_{k=0,1,2}$ defined by $\mathcal{F}_k := \sigma(X_i, 0 \le i \le k)$ and $\mathcal{G}_k := \sigma(X_k), \ k = 0, 1, 2.$
- (c) Show that $Z: \Omega \to \mathbb{R}$ defined by $Z(\omega) := 2X_1(\omega) + 1$ is $\sigma(X_1)$ -measurable.
- (d) Do \mathbb{F} and \mathbb{G} form filtrations on (Ω, \mathcal{F}) ? Why or why not?
- (e) Is X adapted to \mathbb{F} or \mathbb{G} (in case any of the former is a filtration on (Ω, \mathcal{F}))?
- (f) Try to give financial interpretations for X and \mathbb{F} .

Exercise 1.2 Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \to \mathbb{R}$ a random variable with $X \ge 0$ P-a.s. Prove that E[X] = 0 implies that X = 0 P-a.s.

Exercise 1.3 Let (Ω, \mathcal{F}, P) be a probability space, X an integrable random variable and $\mathcal{G} \subseteq \mathcal{F}$ a σ -field. Then the P-a.s. unique random variable Z such that

- Z is \mathcal{G} -measurable and integrable.
- $E[X\mathbb{1}_A] = E[Z\mathbb{1}_A]$ for all $A \in \mathcal{G}$,

is called *conditional expectation of* X *given* \mathcal{G} and is denoted by $E[X|\mathcal{G}]$. (This is the formal definition of conditional expectation of X given \mathcal{G} ; see Section 8.2 in the lecture notes.)

- (a) Use the definition above to show that if X is \mathcal{G} -measurable, then $E[X | \mathcal{G}] = X$ P-a.s.
- (b) Use the definition of conditional expectation to show that $E[E[X|\mathcal{G}]] = E[X]$.
- (c) Use the definition of conditional expectation to show that if $P[A] \in \{0, 1\}$ for all $A \in \mathcal{G}$, i.e. if \mathcal{G} is P-trivial, then $E[X | \mathcal{G}] = E[X]$ P-a.s.
- (d) Consider an integrable random variable Y on (Ω, \mathcal{F}, P) , and two constants $a, b \in \mathbb{R}$. Use the definition of conditional expectation to show that $E[aX + bY | \mathcal{G}] = aE[X | \mathcal{G}] + bE[Y | \mathcal{G}]$ P-a.s.

(e) Suppose that \mathcal{G} is generated by a finite partition of Ω , i.e. there exists a collection $(A_i)_{i=1,\ldots,n}$ of sets $A_i \in \mathcal{F}$ such that $\bigcup_{i=1}^n A_i = \Omega$, $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\mathcal{G} = \sigma(A_1,\ldots,A_n)$. Additionally, assume that $P[A_i] > 0$ for all $i = 1,\ldots,n$. Use the definition of conditional expectation to show that

$$E[X | \mathcal{G}] = \sum_{i=1}^{n} E[X | A_i] \mathbb{1}_{A_i} \qquad P\text{-a.s.}$$

This says that the conditional expectation of a random variable given a finitely generated σ algebra is a *piecewise constant* function with the constants given by the elementary conditional
expectations given the sets of the generating partition.

Hint 1: Recall that $E[X | A_i] = E[X \mathbb{1}_{A_i}] / P[A_i]$ and try to write X as a sum of random variables each of which only takes non-zero values on a single A_i .

Hint 2: Check that any set $A \in \mathcal{G}$ is of the form $\bigcup_{j \in J} A_j$ for some $J \subseteq \{1, \dots, n\}$.