Mathematical Foundations for Finance

Exercise sheet 10

Please hand in your solutions until Wednesday, November 25, 12:00 via the course homepage.

Exercise 10.1 Consider a probability space (Ω, \mathcal{F}, P) endowed with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$.

- (a) Let X be an RCLL \mathbb{F} -adapted stochastic process and τ an \mathbb{F} -stopping time. Show that if X^{τ} is an \mathbb{F} -martingale, then so is X^{σ} for any \mathbb{F} -stopping time σ with $\sigma \leq \tau$ P-a.s. Hint: You can use the result that a stopped RCLL martingale is again an RCLL martingale. This result is similar to the result you have proved in Exercise 3.1 (c).
- (b) Let M and N be two RCLL local F-martingales. Show that the linear combination αM + βN for any α, β ∈ ℝ is an RCLL local F-martingale as well. Hint: Make use of the result in (a).
- (c) We say that two Brownian motions W^1 and W^2 on $(\Omega, \mathcal{F}, \mathbb{F}, P)$ are correlated with instantaneous correlation $\rho \in [-1, 1]$ if for $s \leq t$, the increments $W_t^1 - W_s^1$ and $W_t^2 - W_s^2$ are independent of \mathcal{F}_s and jointly normally distributed with $\mathcal{N}(\mu, \Sigma)$, where

$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} t-s & \rho(t-s) \\ \rho(t-s) & t-s \end{pmatrix}.$$

Show that $[W^1, W^2]_t = \rho t P$ -a.s.

Hint: Define $B^{\lambda} = \lambda(W^{1} + W^{2})$ with $\lambda \in \mathbb{R}$. Find λ such that B^{λ} becomes a (P, \mathbb{F}) -Brownian motion. Then compute $[B^{\lambda}]$ in terms of W^{1} and W^{2} , using the properties of $[\cdot, \cdot]$.

Exercise 10.2 Let M be an RCLL local martingale null at 0 which satisfies $\sup_{0 \le t \le T} |M_t| \in L^2$ for some $T \in \mathbb{R}$.

- (a) Show that M is a square-integrable martingale on [0, T]. Hint: Dominated convergence theorem.
- (b) Let [M] be the square bracket process of M. Show that

$$E[[M]_t - [M]_s | \mathcal{F}_s] = \operatorname{Var}[M_t - M_s | \mathcal{F}_s]$$

for all $0 \le s \le t \le T$. Hint: Recall that $\operatorname{Var}[X | \mathcal{G}] = E[(X - E[X | \mathcal{G}])^2 | \mathcal{G}].$

Exercise 10.3 On a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, consider an adapted stochastic process $X = (X_t)_{t\geq 0}$ null at 0. Assume that X is integrable and has independent stationary increments, i.e. $X_t - X_s$ is independent of \mathcal{F}_s and has the same distribution as X_{t-s} for all t > s. (In particular, this is satisfied for any *Lévy process* $L = (L_t)_{t\geq 0}$ with $E[|L_1|] < \infty$).

- (a) Which conditions must $(E[X_t])_{t\geq 0}$ satisfy in order to make X a (P, \mathbb{F}) -supermartingale, a (P, \mathbb{F}) -submartingale, or a (P, \mathbb{F}) -martingale?
- (b) Assume from now on that X is a square-integrable (P, \mathbb{F}) -martingale. Prove that we have for all t, s > 0 that

$$E\left[X_t^2\right] + E\left[X_s^2\right] = E\left[X_{t+s}^2\right]$$

and deduce that $\left(E\left[X_t^2\right]\right)_{t>0}$ is an increasing process.

Updated: December 2, 2020

- (c) Use (b) to prove that $E[X_t^2] = tE[X_1^2]$ for all $t \ge 0$. Hint: Prove the result first for t = 1/n for all $n \in \mathbb{N}$. Deduce that it holds true for all $t \in \mathbb{Q}_+$ and use monotonicity to conclude.
- (d) Prove that $\langle X \rangle_t = tE [X_1^2]$, for all $t \ge 0$. Hint: Use your result from (c).