EHzürich

Mathematical Foundations for Finance

Exercise 11

Martin Stefanik ETH Zurich We know from Itô's lemma that a C² transformation of any semimartingale is again a semimartingale.

We are often interested in whether these transformations (or stochastic integrals, in which Itô's formula represents these transformations) are square-integrable martingales, martingales or at least local martingales.

- If *M* is a local martingale and $H \in L^2(M)$, then $(H \cdot M)$ is a martingale in \mathcal{M}_0^2 ; in particular, it is square-integrable.
- If *M* is a martingale in \mathcal{M}_0^2 , and *H* is predictable and bounded, then $(H \cdot M)$ is a martingale in \mathcal{M}_0^2 ; in particular, it is square-integrable.
- If *M* is a local martingale and $H \in L^2_{loc}(M)$, then $(H \cdot M)$ is a local martingale in $\mathcal{M}^2_{0,loc}$; in particular, if $(\tau_n)_{n \in \mathbb{N}}$ is a localizing sequence for $(H \cdot M)$, then $(H \cdot M)^{\tau_n}$ is a square-integrable martingale for all $n \in \mathbb{N}$.
- If *M* is a local martingale and *H* is predictable and locally bounded, then $(H \cdot M)$ is local martingale.

Theorem 1 (Girsanov's theorem)

Suppose that $Q \stackrel{\text{loc}}{\approx} P$ with a density process Z. If M is a local P-martingale null at 0, then

$$\widetilde{M} := M - \int \frac{1}{Z} d[Z, M]$$

is a local Q-martingale null at 0. As a consequence, every P-semimartingale is also a Q-semimartingale.

- $Q \stackrel{\scriptscriptstyle \text{loc}}{\approx} P$ means that $Q \approx P$ on \mathcal{F}_T for all $T \geq 0$.
- We already know from Itô's lemma that the class of semimartingales is closed under C^2 transformation, i.e. if X is a semimartingale, then f(X) is semimartingale for any $f \in C^2$. Girsanov adds that this property is maintained under a change to any equivalent measure as well.

First note that given *any* density process *Z*, we can write $Z = Z_0 \mathcal{E}(L)$, where the local *P*-martingale is given by

$$L = \int \frac{1}{Z_-} dZ$$
 or $dL = \frac{1}{Z_-} dZ$.

This means that when we want to specify an equivalent measure in terms of a density process, it is satisfactory to consider *only* stochastic exponentials. However, not every stochastic exponential specifies a density process.

Theorem 2 (Girsanov's theorem for continuous density processes)

Suppose that $Q \stackrel{\text{loc}}{\approx} P$ with a continuous density process Z. Write $Z = Z_0 \mathcal{E}(L)$. If M is a local P-martingale null at 0, then

$$\widetilde{M} := M - [L, M] = M - \langle L, M \rangle$$

is a local Q-martingale null at zero. Moreover, if W is a P-Brownian motion, then \widetilde{W} is a Q-Brownian motion.

Girsanov's Theorem

• Since the above is just a special case of the former theorem, we must have for any local *P*-martingale and a *continuous* density process *Z* that

$$\int \frac{1}{Z} d[Z, M] = [L, M] = \langle L, M \rangle.$$

- We could also write $Z = Z_0 \mathcal{E}(L)$ in the first, more general theorem, but the above simplification would not happen.
- We know that any density process Z can be expressed in terms of a stochastic exponential, but it not the only way to specify an equivalent measure. In particular, we could directly specify the Radon-Nikodým derivative on F_T,

$$\mathcal{D}|_{\mathcal{F}_{T}} = rac{dQ|_{\mathcal{F}_{T}}}{dP|_{\mathcal{F}_{T}}}$$

This can be any D > 0 with $E_P[D] = 1$.

• This can be advantageous, since we have seen that for an arbitrary local *P*-martingale *X*, $\mathcal{E}(X)$ can be both negative and not necessarily a martingale. $\mathcal{E}(X)$ thus does not specify a density process for any local *P*-martingale *X*.

Thank you for your attention!