Mathematical Foundations for Finance

Exercise sheet 12

Please hand in your solutions until Wednesday, December 9, 12:00 via the course homepage.

Exercise 12.1 Let $X = (X_t)_{t>0}$ be a continuous semimartingale null at 0. We define the process

$$Z := \mathcal{E}(X) := e^{X - \frac{1}{2}[X]}.$$

(a) Show via Itô's formula that

$$Z_t = 1 + \int_0^t Z_s dX_s, \quad \forall t \ge 0.$$
(1)

Conclude that Z is a continuous local martingale if and only if X is a continuous local martingale.

- (b) Show that $Z = \mathcal{E}(X)$ is the only solution to (1) for a given X. Hint: Let Z' be another solution of (1). Compute $\frac{Z'}{Z}$ using Itô's formula.
- (c) Let $Y = (Y_t)_{t>0}$ be another continuous semimartingale null at 0. Prove Yor's formula

$$\mathcal{E}(X)\mathcal{E}(Y) = \mathcal{E}\left(X + Y + [X, Y]\right).$$

Exercise 12.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ with $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be a filtered probability space and consider two *independent* Brownian motions $W^1 = (W_t^1)_{t \in [0,T]}$ and $W^2 = (W_t^2)_{t \in [0,T]}$. Let $\widetilde{S}^1 = (\widetilde{S}_t^1)_{t \in [0,T]}$ and $\widetilde{S}^2 = (\widetilde{S}_t^2)_{t \in [0,T]}$ be two *undiscounted* stock price processes with the dynamics

$$\begin{split} d\widetilde{S}_{t}^{1} &= \widetilde{S}_{t}^{1} \left(\mu_{1} dt + \sigma_{1} dB_{t}^{1} \right), \quad \widetilde{S}_{0}^{1} > 0, \\ d\widetilde{S}_{t}^{2} &= \widetilde{S}_{t}^{2} \left(\mu_{2} dt + \sigma_{2} dB_{t}^{2} \right), \quad \widetilde{S}_{0}^{2} > 0, \end{split}$$

where $B^1 = W^1$, $B^2 = \alpha W^1 + \sqrt{1 - \alpha^2} W^2$ for some $\alpha \in (-1, 1)$, $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$.

- (a) Find the SDEs satisfied by $X^1 := \frac{\widetilde{S}^2}{\widetilde{S}^1}$ and $X^2 := \frac{\widetilde{S}^1}{\widetilde{S}^2}$, expressed in terms of B^1 and B^2 . *Remark:* Since \widetilde{S}^1 and \widetilde{S}^2 have continuous trajectories and satisfy $\widetilde{S}^1_t, \widetilde{S}^2_t > 0$ for all $t \in [0, T]$ *P*-a.s., we can choose each of them as *numéraire*.
- (b) For $\beta_1, \beta_2 \in \mathbb{R}$, define the continuous local (P, \mathbb{F}) -martingale $L^{(\beta_1, \beta_2)} := \beta_1 W^1 + \beta_2 W^2$. Show that for all $\beta_1, \beta_2 \in \mathbb{R}$, the stochastic exponential $Z^{(\beta_1, \beta_2)} := \mathcal{E}(L^{(\beta_1, \beta_2)})$ is a true (P, \mathbb{F}) -martingale on [0, T].
- (c) For $\beta_1, \beta_2 \in \mathbb{R}$, define by $dQ^{(\beta_1,\beta_2)} = Z_T^{(\beta_1,\beta_2)} dP$ a probability measure $Q^{(\beta_1,\beta_2)}$ which is equivalent to P on \mathcal{F}_T . Fix $\beta_1, \beta_2 \in \mathbb{R}$. Using Girsanov's theorem, show that the two processes $\widetilde{W}_t^1 := W_t^1 \beta_1 t$ and $\widetilde{W}_t^2 := W_t^2 \beta_2 t$, $t \in [0,T]$, are local $(Q^{(\beta_1,\beta_2)}, \mathbb{F})$ -martingales. Conclude that

$$\widetilde{B}^1 := \widetilde{W}^1$$
 and $\widetilde{B}^2_t := B^2_t - (\alpha \beta_1 + \sqrt{1 - \alpha^2} \beta_2)t, \quad t \in [0, T],$

are local $(Q^{(\beta_1,\beta_2)}, \mathbb{F})$ -martingales as well.

Remark: One can show that \widetilde{W}^1 and \widetilde{W}^2 are *independent* Brownian motions under $Q^{(\beta_1,\beta_2)}$ and correspondingly that \widetilde{B}^1 and \widetilde{B}^2 are *correlated* Brownian motions under $Q^{(\beta_1,\beta_2)}$.

Updated: December 1, 2020

(d) What conditions on $\beta_1, \beta_2 \in \mathbb{R}$ make the processes X^1 and X^2 ($Q^{(\beta_1,\beta_2)}, \mathbb{F}$)-martingales? Can the be martingales simultaneously under the same measure?

Exercise 12.3 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$. Let $M = (M_t)_{t \ge 0}$ be a local (P, \mathbb{F}) -martingale and $W = (W_t)_{t \ge 0}$ a (P, \mathbb{F}) -Brownian motion.

- (a) Let $H = (H_t)_{t \ge 0}$ be in $L^2(M)$. Compute $E\left[\int_0^T H_s dM_s\right]$ and $\operatorname{Var}\left[\int_0^T H_s dM_s\right]$. How do the expressions look for M := W?
- (b) Let $H_s := \exp(-4s)$. Show that $\int_0^T H_s dW_s$ is in fact normally distributed. What are the mean and the variance of this normal distribution? How would the result change if $H : \mathbb{R} \to \mathbb{R}$ were an arbitrary (deterministic) continuous function? Hint 1: Use the dominated convergence theorem for stochastic integrals from the lecture notes. Hint 2: If $X_n \sim \mathcal{N}(\mu_n, \sigma_n^2)$, $X_n \to X$ in probability, $\mu_n \to \mu$ and $\sigma_n^2 \to \sigma^2 > 0$, then $X \sim \mathcal{N}(\mu, \sigma^2)$.
- (c) By coming up with a counterexample, show that the normality of $\int_0^T H_s dW_s$ from (b) does not hold for an arbitrary continuous process $H \in L^2(W)$.