Mathematical Foundations for Finance

Exercise sheet 13

Please hand in your solutions until Wednesday, December 16, 12:00 via the course homepage.

Exercise 13.1 Let (Ω, \mathcal{F}, P) be a probability space endowed with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$. Let $N = (N_t)_{t\geq 0}$ be a (P, \mathbb{F}) -Poisson process with parameter $\lambda > 0$. Let $\tilde{\lambda} > 0$ and define a process $S = (S_t)_{t\geq 0}$ by

$$S_t := e^{(\lambda - \widetilde{\lambda})t} \left(\frac{\widetilde{\lambda}}{\lambda}\right)^{N_t}.$$

(a) Let $X = (X_t)_{t \ge 0}$ be given by $X_t = \alpha t + \beta N_t$ for some $\alpha, \beta \in \mathbb{R}$. Show that we have for any C^2 -function $f : \mathbb{R} \to \mathbb{R}$ that

$$f(X_t) = f(0) + \alpha \int_0^t f'(X_{s-}) ds + \sum_{0 < s \le t} \left(f(X_s) - f(X_{s-}) \right).$$

Hint: Use the results we have shown for Poisson processes in Exercise 9.2.

(b) Show that *P*-a.s. for all t > 0, we have that

$$\Delta S_t = \frac{\lambda - \lambda}{\lambda} S_{t-} \Delta N_t.$$

(c) Show that *P*-a.s. for all $t \ge 0$, we have that

$$S_t = 1 + \int_0^t \frac{\widetilde{\lambda} - \lambda}{\lambda} S_{u-} d\widetilde{N}_u,$$

where $\widetilde{N} = (\widetilde{N})_{t \geq 0}$ is a compensated Poisson process with parameter λ . Hint: Use your result from (a).

(d) Deduce that S is a local (P, \mathbb{F}) -martingale. Show that it is even a true (P, \mathbb{F}) -martingale. Hint: Show that $\sup_{0 \le t \le T} |S_t|$ is integrable for each T > 0.

Exercise 13.2 Let T > 0 denote a fixed time horizon and $W = (W_t)_{t \in [0,T]}$ a Brownian motion on some probability space (Ω, \mathcal{F}, P) . Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W and augmented by the *P*-nullsets in $\sigma(W_s, s \leq T)$. Consider the Black–Scholes model, where the undiscounted bank account price process $\widetilde{S}^0 = (\widetilde{S}^0_t)_{t \in [0,T]}$ and the undiscounted stock price process $\widetilde{S}^1 = (\widetilde{S}^1_t)_{t \in [0,T]}$ are given by

$$d\widetilde{S}_t^0 = \widetilde{S}_t^0 r dt \quad \text{and} \quad d\widetilde{S}_t^1 = \widetilde{S}_t^1 \left(\mu dt + \sigma dW_t\right), \tag{1}$$

where $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\widetilde{S}_0^0 = 1$ and $\widetilde{S}_0^1 > 0$ are deterministic.

(a) Prove using Itô's formula that the discounted stock price process $S^1 = \widetilde{S}^1 / \widetilde{S}^0$ solves

$$dS_t^1 = S_t^1 \left((\mu - r)dt + \sigma dW_t \right). \tag{2}$$

Updated: December 8, 2020

(b) Prove using Itô's formula that

$$S_t^1 = S_0^1 \exp\left(\sigma W_t + \left(\mu - r - \frac{1}{2}\sigma^2\right)t\right), \quad \text{for } t \in [0, T],$$

i.e., show that the process $\left(S_0^1 \exp\left(\sigma W_t + \left(\mu - r - \frac{1}{2}\sigma^2\right)t\right)\right)_{t \in [0,T]}$ solves (2).

- (c) Let $L^{\lambda} := -\lambda W$ and $Z^{\lambda} := \mathcal{E}(L^{\lambda})$. Prove that the process $W^{\lambda} := (W_t + \lambda t)_{t \in [0,T]}$ is a Brownian motion on [0,T] under the measure Q_{λ} given by $\frac{dQ_{\lambda}}{dP} := Z_T^{\lambda}$.
- (d) Prove that for the right choice of λ , the discounted stock price process S^1 is a Q_{λ} -martingale. Hint: Rewrite $\sigma W_t + (\mu - r - \frac{1}{2}\sigma^2)t$ as a function of $W_t^{\lambda}, t, \sigma, \mu$, and r.

Exercise 13.3 Let T > 0 denote a fixed time horizon and let $W = (W_t)_{t \in [0,T]}$ be a Brownian motion on some probability space (Ω, \mathcal{F}, P) . Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W and augmented by the P-nullsets in $\sigma(W_s, 0 \le s \le T)$. Consider the Black–Scholes model, where the undiscounted bank account price process $\widetilde{S}^0 = (\widetilde{S}^0_t)_{t \in [0,T]}$ and the undiscounted stock price process $\widetilde{S}^1 = (\widetilde{S}^1_t)_{t \in [0,T]}$ are given by

$$\frac{d\widetilde{S}_t^0}{\widetilde{S}_t^0} = rdt \quad \text{and} \quad \frac{d\widetilde{S}_t^1}{\widetilde{S}_t^1} = \mu dt + \sigma dW_t,$$

with $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\widetilde{S}_0^0 = 1$ and $\widetilde{S}_0^1 > 0$ deterministic. Using the notation of the previous exercise, denote $Q^* := Q_{\lambda^*}$, where λ^* is the unique value of λ making Q_{λ} an equivalent martingale measure for $S^1 := \widetilde{S}^1 / \widetilde{S}^0$.

Hint: If you did not find λ^* in Exercise 13.2 (d), you can use that $\lambda^* = \frac{\mu - r}{\sigma}$.

(a) Hedge the discounted square option, i.e., find a self-financing strategy $\varphi \cong (V_0, \vartheta)$ such that

$$V_0 + \int_0^T \vartheta_u dS_u^1 = \frac{\left(\widetilde{S}_T^1\right)^2}{\widetilde{S}_T^0}.$$

Hint: Look for a representation result under Q^* , not under P.

(b) Hedge the discounted *inverted option*, i.e., find a self-financing strategy $\varphi \cong (\overline{V}_0, \overline{\vartheta})$ such that

$$\overline{V}_0 + \int_0^T \overline{\vartheta}_u dS^1_u = \frac{1}{\widetilde{S}^0_T \widetilde{S}^1_T}$$