Mathematical Foundations for Finance

Exercise sheet 3

Please hand in your solutions until Wednesday, October 7, 12:00 via the course homepage.

Exercise 3.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,\ldots,T}$ and let $X = (X_k)_{k=0,1,\ldots,T}$ be a martingale with respect to \mathbb{F} and P.

- (a) Show that for any bounded, convex function $f: \mathbb{R} \to \mathbb{R}$, the process $f(X) = (f(X_k))_{k=0,1,\dots,T}$ is a submartingale with respect to \mathbb{F} and P. What can you say if f is not bounded? Hint: Any convex function on \mathbb{R}^n is continuous on the interior of the set where it is finite.
- (b) Let $\vartheta = (\vartheta_k)_{k=0,1,\dots,T}$ with $\vartheta_0 = 0$ be a bounded, nonnegative, \mathbb{F} -predictable process. Show that the stochastic integral process $\vartheta \cdot f(X) := \vartheta \cdot (f(X))$ defined by

$$\vartheta \cdot f(X)_k = \sum_{j=1}^k \vartheta_j \Delta f(X_j) = \sum_{j=1}^k \vartheta_j \big(f(X_j) - f(X_{j-1}) \big)$$

is a submartingale with respect to \mathbb{F} and P.

Hint: We have proved in the lecture that the stochastic integral process of a similar predictable process with respect to a martingale is martingale.

(c) Let τ be a stopping time with respect to \mathbb{F} and define the stopped process $f(X)^{\tau} = (f(X)_k^{\tau})_{k=0,1,\dots,T}$ by $f(X)_k^{\tau} = f(X_{k\wedge\tau})$. Show that $f(X)^{\tau}$ is a submartingale with respect to \mathbb{F} .

Hint: Try to express the stopped process as an appropriate stochastic integral process.

(d) Let $Y=(Y_k)_{k=0,1,...,T}$ be an adapted, integrable process. Show that Y is a martingale if and only if $E[Y_{k+1} | \mathcal{F}_k] = Y_k$ P-a.s. for $k=0,1,\ldots,T-1$.

Exercise 3.2 Let $(\widetilde{S}^0, \widetilde{S}^1)$ be a market modelled by a *binomial model*. More precisely, let the undiscounted price processes of the assets in our market be defined by

$$\widetilde{S}_{k}^{0} = (1+r)^{k}$$
 for $k = 0, 1, \dots, T$, $\frac{\widetilde{S}_{k+1}^{1}}{\widetilde{S}_{k}^{1}} = Y_{k+1}$ for $k = 0, 1, \dots, T-1$,

where the Y_k are i.i.d. random variables taking values 1 + u with probability $p \in (0, 1)$ and 1 + d with probability 1 - p. Assume furthermore that u > d > -1 and r > -1.

- (a) Suppose that $r \leq d$. Show that in this case, the market $(\tilde{S}^0, \tilde{S}^1)$ admits arbitrage by explicitly constructing an arbitrage opportunity.
- (b) Suppose that $r \geq u$. Show that also in this case, the market $(\widetilde{S}^0, \widetilde{S}^1)$ admits arbitrage by explicitly constructing an arbitrage opportunity.

Exercise 3.3 Let $(\widetilde{S}^0, \widetilde{S}^1)$ be a *trinomial model*. This is, like the binomial model, a special case of a *multinomial model*, and the distribution of Y_k under P is given by

$$Y_k = \begin{cases} 1+d & \text{with probability } p_1, \\ 1+m & \text{with probability } p_2, \\ 1+u & \text{with probability } p_3 \end{cases}$$

where p_1 , p_2 , $p_3 > 0$, $p_1 + p_2 + p_3 = 1$ and -1 < d < m < u. Here d, m and u are mnemonics for down, middle and up. Recall that the filtration \mathbb{F} we consider is generate by Y.

(a) Assume that d=-0.5, m=0, u=0.25 and r=0. For T=1, consider an arbitrary self-financing strategy $\varphi = (V_0, \theta)$. Show that if the total gain $G_1(\theta)$ at time T=1 is nonnegative P-a.s., then

$$P[G_1(\theta) = 0] = 1.$$

What does this property imply?

(b) Show that S^1 is arbitrage-free by constructing an equivalent martingale measure (EMM) for S^1 .

Hint: A probability measure Q equivalent to P on \mathcal{F}_1 can be uniquely described by a probability vector $(q_1, q_2, q_3) \in (0, 1)^3$, where $q_k = Q[Y_1 = 1 + y_k]$, k = 1, 2, 3, using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$. A probability vector in \mathbb{R}^n , $n \in \mathbb{N}$, is a nonnegative vector in \mathbb{R}^n whose coordinates sum up to 1.

(c) Assume now that d = -0.01, m = 0.01, u = 0.03 and r = 0.01. For T = 2, give a parametrisation of all EMMs for S^1 .

Hint: A probability measure Q equivalent to P on \mathcal{F}_2 can be uniquely described by four probability vectors (q_1,q_2,q_3) , $(q_{j,1},q_{j,2},q_{j,3}) \in (0,1)^3$, j=1,2,3, where $q_j=Q[Y_1=1+y_j]$ and $q_{j,k}=Q[Y_2=1+y_k\,|\,Y_1=1+y_j]$, j,k=1,2,3, using the notation $y_1:=d$, $y_2:=m$ and $y_3:=u$.