Mathematical Foundations for Finance

Exercise sheet 6

Please hand in your solutions until Wednesday, October 28, 12:00 via the course homepage.

Exercise 6.1 Consider a financial market in finite discrete time on a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ with undiscounted prices \widetilde{S}^0 and \widetilde{S} and discounted prices 1 and $S = \widetilde{S}/\widetilde{S}^0$. An arbitrage opportunity in the undiscounted market is a self-financing strategy φ with $\widetilde{V}(\varphi) \ge -a P$ -a.s. for some $a \ge 0$ (admissibility), $\widetilde{V}_0(\varphi) = 0$, $\widetilde{V}_T(\varphi) \ge 0 P$ -a.s. and $P[\widetilde{V}_T(\varphi) > 0] > 0$.

- (a) Show that (\tilde{S}^0, \tilde{S}) is free of arbitrage if and only if (1, S) is. Hint: Remember that in finite discrete time, we have $NA \iff NA'$.
- (b) Construct an example where \widetilde{S} admits an EMM, but is not arbitrage-free. Does S then admit an EMM? What can you say about \widetilde{S}^0 for any such example?
- (c) In your example, construct explicitly an arbitrage opportunity for the undiscounted market.
- (d) Try to provide some intuition for why the existence of an EMM for \tilde{S} does not imply NA, when we know that the existence of an EMM for S does.

Exercise 6.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P, \widetilde{S}^0, \widetilde{S}^1)$ be our canonical setup for a one-period trinomial model in which the evolution of $(\widetilde{S}^0, \widetilde{S}^1)$ is given by

$$\widetilde{S}_{0}^{1} = S_{0}^{1} = 80, \quad \widetilde{S}_{1}^{1} = \begin{cases} 120 & \text{with probability } p_{1} = 0.2, \\ 90 & \text{with probability } p_{2} = 0.3, \\ 60 & \text{with probability } p_{3} = 0.5 \end{cases}$$
$$\widetilde{S}_{0}^{0} = 1, \quad \widetilde{S}_{1}^{0} = 1 + 0.05.$$

- (a) Check if the market is arbitrage-free by finding at least one EMM for $S^1 = \tilde{S}^1 / \tilde{S}^0$.
- (b) Find the set of all EMMs for S^1 .
- (c) Compute $E_Q[\widetilde{C}/\widetilde{S}_1^0]$ for all $Q \in P_e(S^1)$, where \widetilde{C} is the (undiscounted) payoff of a European call option with maturity T = 1 and strike price $\widetilde{K} = 80$, i.e. $\widetilde{C}(\omega) = (\widetilde{S}_1^1(\omega) 80)^+$.
- (d) An undiscounted payoff $H \in L^0_+(\mathcal{F}_T)$ is attainable if it can be written as $\widetilde{H} = \widetilde{V}(\varphi)$ for some self-financing strategy φ which is admissible in the undiscounted market. Determine whether \widetilde{C} as given in (c) is attainable.
- (e) Find the set of all attainable payoffs $\widetilde{H} \in L^0_+(\mathcal{F}_T)$. Hint: Every payoff is characterized by the values it takes on the atoms of \mathcal{F}_T . The set of all attainable payoffs can be identified with the set of solutions to a linear system.

Exercise 6.3 Consider a measurable space (Ω, \mathcal{F}) with random variables $Y_1, \ldots, Y_T > 0, T \in \mathbb{N}$. The random variables define a multiplicative model for $\widetilde{S}^1 = (\widetilde{S}^1_k)_{k=0,1,\ldots,T}$ by taking

$$\widetilde{S}_k^1 := s_0 \prod_{i=1}^k Y_i$$
, for some $s_0 > 0$.

Updated: December 2, 2020

Endow (Ω, \mathcal{F}) with the filtration \mathbb{F} generated by \widetilde{S}^1 . Furthermore, let $\widetilde{S}^0 \equiv 1$, which corresponds to zero interest rates and gives $S^1 \equiv \widetilde{S}^1$. Now consider the self-financing "buy low, sell high" strategy $\varphi \cong (0, \vartheta)$ from Exercise 2.2 with $\vartheta = (\vartheta_k)_{k=0,1,\dots,T}$ given by $\vartheta_k = \mathbb{1}_{\{\rho < k \leq \tau\}}$, where ρ and τ are the \mathbb{F} -stopping times defined by

$$\rho(\omega) := \inf\{k = 0, \dots, T : S_k^1(\omega) \le \ell\} \land T,$$

$$\tau(\omega) := \inf\{k = \rho(\omega), \dots, T : S_k^1(\omega) \ge u\} \land T,$$

for $0 < \ell < s_0 < u$. Recall that the strategy's discounted value process $V(\varphi) = (V_k(\varphi))_{k=0,1,\dots,T}$ is given by

$$V_k(\varphi) = S^1_{\tau \wedge k} - S^1_{\rho \wedge k}.$$

Note that nothing defined up to this point requires to have a probability measure on (Ω, \mathcal{F}) .

- (a) Give conditions on a probability measure P on (Ω, \mathcal{F}) , expressed via the process S^1 , that are equivalent to φ not being an arbitrage opportunity. Hint: Partition Ω into sets on which it is easier to see how φ behaves.
- (b) Express the conditions on P from (a) as conditions involving the random variables Y_1, \ldots, Y_T .