Mathematical Foundations for Finance

Exercise sheet 8

Please hand in your solutions until Wednesday, November 11, 12:00 via the course homepage.

Exercise 8.1 Let $W = (W_t)_{t \ge 0}$ and $W' = (W'_t)_{t \ge 0}$ be two *independent* Brownian motions (BM) defined on some probability space (Ω, \mathcal{F}, P) (without filtration). Show that

- (a) $W^1 := -W$ is a BM.
- (b) $W_t^2 := W_{T+t} W_T, t \ge 0$, is a BM for any $T \in (0, \infty)$.
- (c) $W^3 := \alpha W + \sqrt{1 \alpha^2} W'$ is a BM for any $\alpha \in [0, 1]$.
- (d) Show that the independence of W and W' in (c) cannot be omitted, i.e., if W and W' are *not* independent, then W^3 need not be a BM. Give two examples.

Exercise 8.2 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion defined on some sufficiently rich filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions.

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary convex function. Show that if the stochastic process $(f(W_t))_{t \ge 0}$ is integrable, then it is a (P, \mathbb{F}) -submartingale. Hint: We have done something similar in discrete time.
- (b) Given a (P, \mathbb{F}) -martingale $(M_t)_{t \geq 0}$ and a measurable function $g \colon \mathbb{R}_+ \to \mathbb{R}$, show that the process

$$\left(M_t + g(t)\right)_{t \ge 0}$$

is a (P, \mathbb{F}) -supermartingale if and only if g is decreasing, and a (P, \mathbb{F}) -submartingale if and only if g is increasing.

- (c) Show that the following stochastic processes are (P, \mathbb{F}) -submartingales, but not martingales:
 - (i) W^2 ,
 - (ii) $e^{\alpha W}$ for any $\alpha \in \mathbb{R}$.

Hint: Use the result from (a) and (b), respectively.

(d) Show that any (P, F)-local martingale which is null at 0 and uniformly bounded from below is a (P, F)-supermartingale.
Hint: We have done this in discrete time already.

Exercise 8.3 In this exercise, we are going to allude to the so-called *Girsanov theorem* that we will prove later in the course in a more general setting. We do this by showing a simple special case. Let $W = (W_t)_{t \in [0,T]}$, T > 0, be a Brownian motion on a probability space (Ω, \mathcal{F}, P) with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$.

(a) Let $M^{\alpha} = (M_t^{\alpha})_{t \in [0,T]}$ be defined by

$$M_t^{\alpha} := e^{\alpha W_t - \frac{1}{2}\alpha^2 t},$$

Show that for any $\alpha \in \mathbb{R}$, M^{α} is the density process of an equivalent probability measure Q^{α} defined via its Radon–Nikodým derivative with respect to P given by

$$\frac{dQ^{\alpha}}{dP} := M_T^{\alpha}$$

(b) Show that W is a (Q, \mathbb{F}) -Brownian motion with constant drift $\beta \in \mathbb{R}$. This means that W satisfies all the defining properties of BM except that instead of $W_t - W_s \sim \mathcal{N}(0, t-s)$ for all $0 \leq s \leq t \leq T$, we have that $W_t - W_s \sim \mathcal{N}(\beta(t-s), t-s)$ for some $\beta \in \mathbb{R}$ to be determined, for all $0 \leq s \leq t \leq T$.

Hint 1: Compute the conditional moment-generating function of $W_t - W_s$ under Q^{α} .

Hint 2: The Bayes formula from Lemma II.3.1 also holds in continuous time.

Hint 3: Recall that if $Z \sim \mathcal{N}(\mu, \sigma^2)$ then $E\left[e^{uZ}\right] = e^{\mu u + 1/2\sigma^2 u^2}$ for all $u \in \mathbb{R}$.

Hint 4: If Y and Y' are random variables with $E[e^{uY} | \mathcal{G}] = E[e^{uY'}] < \infty$ for all $u \in \mathbb{R}$ and some σ -algebra \mathcal{G} , then Y is independent of \mathcal{G} .