Mathematical Foundations for Finance

Exercise sheet 9

Please hand in your solutions until Wednesday, November 18, 12:00 via the course homepage.

Exercise 9.1 Let $(Y_k)_{k\in\mathbb{N}}$ be a sequence of independent random variables defined on a probability space (Ω, \mathcal{F}, P) and consider the filtration $\mathbb{F} = (\mathcal{F}_k)_{k\in\mathbb{N}_0}$ given by $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k = \sigma(Y_1, \ldots, Y_k)$ for all $k \in \mathbb{N}$. Let $E[Y_k] = \mu$ and $\operatorname{Var}[Y_k] = \sigma^2$ for all $k \in \mathbb{N}$ with $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Define then $X = (X_k)_{k\in\mathbb{N}_0}$ by

$$X_k = \sum_{j=1}^k Y_j$$
 for all $k \in \mathbb{N}_0$,

and note that X is adapted to \mathbb{F} .

- (a) Show that for any \mathbb{F} -adapted integrable process $Z = (Z_k)_{k \in \mathbb{N}_0}$, there exists a *P*-a.s. unique decomposition of *Z* into Z = M + A with $M = (M_k)_{k \in \mathbb{N}_0}$ a (P, \mathbb{F}) -martingale and $A = (A_k)_{k \in \mathbb{N}_0}$ an \mathbb{F} -predictable integrable process with $A_0 = 0$. Hint: This is the so-called Doob decomposition. Show the existence by construction.
- (b) Using (a), explicitly derive the processes M and A in the Doob decomposition of X. Show that M and A are both square-integrable.
- (c) Explicitly derive the optional quadratic variation $[M] = ([M]_k)_{k \in \mathbb{N}_0}$ of the square-integrable martingale M from (b), and show that $M^2 [M]$ is a martingale. *Hint: See Theorem V.1.1 in the lecture notes, and use that the condition* $\Delta[M] = (\Delta M)^2$ *implies that* $[M]_k - [M]_{k-1} = (M_k - M_{k-1})^2$.
- (d) Explicitly derive the predictable quadratic variation ⟨M⟩ = (⟨M⟩_k)_{k∈N₀} of the process M from (b). *Hint: See the remark after the introduction of the covariation process in the lecture notes.*

Exercise 9.2 A Poisson process with parameter $\lambda > 0$ with respect to a probability measure P and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$ is a (real-valued) stochastic process $N = (N_t)_{t\geq 0}$ which is adapted to \mathbb{F} , has $N_0 = 0$ P-a.s. and satisfies the following two properties:

(PP1) For $0 \le s < t$, the *increment* $N_t - N_s$ is independent (under P) of \mathcal{F}_s and is (under P) *Poisson-distributed* with parameter $\lambda(t-s)$, i.e.

$$P[N_t - N_s = k] = e^{-\lambda(t-s)} \frac{(\lambda(t-s))^k}{k!}, \quad k \in \mathbb{N}_0.$$

(PP2) N is a counting process with jumps of size 1, i.e. for P-almost all $\omega \in \Omega$, the function $t \mapsto N_t(\omega)$ is right-continuous with left limits (RCLL), piecewise constant, \mathbb{N}_0 -valued, and increases by jumps of size 1.

Poisson processes form the cornerstone of *jump processes*, which are of importance in advanced financial modelling. Show that the following processes are (P, \mathbb{F}) -martingales:

(a) $\widetilde{N}_t := N_t - \lambda t, t \ge 0$. This process is also called a *compensated Poisson process*. Hint: If $X \sim Poi(\lambda)$, then $E[X] = \lambda$.

- (b) $\widetilde{N}_t^2 N_t, t \ge 0$, and $\widetilde{N}_t^2 \lambda t, t \ge 0$. Use these results to derive $[\widetilde{N}]$ and $\langle \widetilde{N} \rangle$. Hint: If $X \sim Poi(\lambda)$, then $\operatorname{Var}[X] = \lambda$.
- (c) $S_t := e^{N_t \log(1+\sigma) \lambda \sigma t}, t \ge 0$, where $\sigma > -1$. S is also called a geometric Poisson process.

Exercise 9.3 Let $(\Pi_n)_{n\in\mathbb{N}}$ be a sequence of refining partitions of $[a,b] \subseteq \mathbb{R}$ (in the sense that $\Pi_n \subseteq \Pi_{n+1}$ for all $n \in \mathbb{N}$) with $|\Pi_n| \to 0$ as $n \to \infty$. Let p > 0. We define for a function $f \colon \mathbb{R} \to \mathbb{R}$ its *p*-variation on [a,b] along the sequence $(\Pi_n)_{n\in\mathbb{N}}$ as

$$\bar{V}^{p}_{(a,b)}(f) := \lim_{n \to \infty} \sum_{t_i \in \Pi_n} |f(t_i) - f(t_{i-1})|^p,$$

assuming that the limit exists. Assume additionally that f is continuous on [a, b].

- (a) Show that if $\bar{V}_{(a,b)}^{p^*}(f)$ is finite and non-zero for some $p^* > 0$, then $\bar{V}_{(a,b)}^p(f) = \infty$ for all $p < p^*$. *Hint: Make sure to use the continuity of* f. Use also that every function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on a compact interval [a,b] is also uniformly continuous on [a,b].
- (b) Show that if $\bar{V}_{(a,b)}^{p^*}(f)$ is finite and non-zero for some $p^* > 0$, then $\bar{V}_{(a,b)}^p(f) = 0$ for all $p > p^*$.