Non-Life Insurance: Mathematics and Statistics

Exercise sheet 10

Exercise 10.1 Method of Bailey & Simon

Suppose that a car insurance portfolio of an insurance company has been divided according to two tariff criteria

- vehicle type: {passenger car, delivery van, truck} = $\{1,2,3\}$,
- driver age: $\{21-30 \text{ years}, 31-40 \text{ years}, 41-50 \text{ years}, 51-60 \text{ years}\} = \{1,2,3,4\}.$

For simplicity, we set the number of policies $v_{i,j} = 1$ for all risk classes $(i, j), 1 \le i \le 3, 1 \le j \le 4$. Moreover, we assume that we work with a multiplicative tariff structure and that we observed the following claim amounts:

	21-30y	31-40y	41-50y	51-60y
passenger car	2'000	1'800	1'500	1'600
delivery van	2'200	1'600	1'400	1'400
truck	2'500	2'000	1'700	1'600

Table 1: Observe	d claim amounts	in the $3 \cdot 4 =$	12 risk classes.
------------------	-----------------	----------------------	------------------

Calculate the tariffs using the method of Bailey & Simon. Comment on the results.

Exercise 10.2 Method of Bailey & Jung

Consider the same setup as in Exercise 10.1. Calculate the tariffs using the method of Bailey & Jung (i.e. the method of total marginal sums). Compare the results to those found in Exercise 10.1, where we applied the method of Bailey & Simon.

Exercise 10.3 Log-Linear Gaussian Regression Model (R Exercise)

Consider the same setup as in Exercise 10.1. This time we calculate the tariffs using the log-linear Gaussian regression model.

- (a) Determine the design matrix Z of the log-linear Gaussian regression model.
- (b) Calculate the tariffs using the MLE method within the log-linear Gaussian regression model framework.
- (c) Compare the results found in part (b) to the results found in Exercises 10.1 and 10.2, where we applied the methods of Bailey & Simon and Bailey & Jung.
- (d) Is there statistical evidence that the classification into different types of vehicles could be omitted?

Exercise 10.4 Tweedie's Compound Poisson Model

Let $S \sim \text{CompPoi}(\lambda v, G)$, where $\lambda > 0$ is the unknown claim frequency parameter, v > 0 the known volume and G the distribution function of a gamma distribution with known shape parameter $\gamma > 0$ and unknown scale parameter c > 0. Then, S has a mixture distribution with a point mass of $\mathbb{P}[S = 0]$ in 0 and a density f_S on $(0, \infty)$.

- (a) Calculate $\mathbb{P}[S=0]$ and the density f_S of S on $(0,\infty)$.
- (b) Show that S belongs to the exponential dispersion family with

$$\begin{split} w &= v, \\ \phi &= \frac{\gamma + 1}{\lambda \gamma} \left(\frac{\lambda v \gamma}{c}\right)^{\frac{\gamma}{\gamma + 1}}, \\ \theta &= -(\gamma + 1) \left(\frac{\lambda v \gamma}{c}\right)^{-\frac{1}{\gamma + 1}}, \\ \Theta &= (-\infty, 0), \\ b(\theta) &= \frac{\gamma + 1}{\gamma} \left(\frac{-\theta}{\gamma + 1}\right)^{-\gamma}, \\ c(0, \phi, w) &= 0 \quad \text{and} \\ c(x, \phi, w) &= \log \left(\sum_{n=1}^{\infty} \left[\frac{(\gamma + 1)^{\gamma + 1}}{\gamma} \left(\frac{\phi}{w}\right)^{-\gamma - 1}\right]^n \frac{1}{\Gamma(n\gamma)n!} x^{n\gamma - 1}\right), \quad \text{if } x > 0. \end{split}$$