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Solution 12.1 (Inhomogeneous) Credibility Estimators for Claim Counts

First, we note that
µ0

def= E[µ(Θi)] = E[Θiλ0] = λ0 = 0.088.
Then, we define

Xi,1 = Ni,1
vi,1

,

for all i ∈ {1, . . . , 5}. We have

E[Xi,1|Θi] = 1
vi,1

E[Ni,1|Θi] = 1
vi,1

µ(Θi) vi,1 = µ(Θi)

and
Var(Xi,1|Θi) = 1

v2
i,1

Var(Ni,1|Θi) = 1
v2
i,1
µ(Θi) vi,1 = µ(Θi)

vi,1
= σ2(Θi)

vi,1
,

with
σ2(Θi) = µ(Θi) = Θiλ0,

for all i ∈ {1, . . . , 5}. Moreover, since

E[µ(Θi)2] = Var(µ(Θi)) + E[µ(Θi)]2 = τ2 + λ2
0 <∞

and
E[X2

i,1|Θi] = Var(Xi,1|Θi) + E[Xi,1|Θi]2 = µ(Θi)
vi,1

+ µ(Θi)2,

we get

E[X2
i,1] = E[E[X2

i,1|Θi]] = E
[
µ(Θi)
vi,1

+ µ(Θi)2
]

= λ0

vi,1
+ τ2 + λ2

0 < ∞,

for all i ∈ {1, . . . , 5}. In particular, Model Assumptions 8.12 of the lecture notes (version of March
20, 2019) for the Bühlmann-Straub model are satisfied. The (expected) volatility σ2 within the
regions defined in formula (8.4) of the lecture notes (version of March 20, 2019) is given by

σ2 = E[σ2(Θi)] = E[µ(Θi)] = λ0 = 0.088.

(a) Let i ∈ {1, . . . , 5}. Then, according to Theorem 8.16 of the lecture notes (version of March
20, 2019), the inhomogeneous credibility estimator is given by

̂̂
µ(Θi) = αi,T X̂i,1:T + (1− αi,T )µ0,

with credibility weight αi,T and observation based estimator X̂i,1:T

αi,T = vi,1

vi,1 + σ2

τ2

and X̂i,1:T = 1
vi,1

vi,1Xi,1 = Xi,1.

Hence, we get

̂̂
µ(Θi) = vi,1

vi,1 + σ2

τ2

Xi,1 +
σ2

τ2

vi,1 + σ2

τ2

µ0 = vi,1

vi,1 + 0.088
0.00024

Xi,1 +
0.088

0.00024
vi,1 + 0.088

0.00024
0.088.
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The results for the five regions are summarized in the following table:

region 1 region 2 region 3 region 4 region 5
αi,T 99.3% 96.5% 99.7% 99.0% 92.0%
X̂i,1:T 7.8% 7.8% 7.4% 9.8% 7.5%
̂̂
µ(Θi) 7.8% 7.9% 7.4% 9.8% 7.6%

Table 1: Estimated credibility weights αi,T , observation based estimates X̂i,1:T and inhomogeneous

credibility estimates ̂̂
µ(Θi) in regions i = 1, . . . , 5.

Note that since the credibility coefficient κ = σ2/τ2 ≈ 367 is rather small compared to the
volumes v1,1, . . . , v5,1, the credibility weights α1,T , . . . , α5,T are fairly high. Moreover, the
observation based estimates are almost the same for the regions 1, 2, 3 and 5, only X̂4,1:T is
roughly 2% higher. As a result, only for the smallest two credibility weights α2,T and α5,T
we see a slight upwards deviation of the corresponding inhomogeneous credibility estimates
̂̂
µ(Θ2) and ̂̂

µ(Θ5) from the observation based estimates X̂2,1:T and X̂5,1:T towards µ0 = 8.8%.
If we decreased the volatility τ2 between the risk classes, the credibility coefficient κ = σ2/τ2

would increase and, thus, the credibility weights α1,T , . . . , α5,T would decrease. Consequently,
the credibility estimates would move stronger towards µ0 = 8.8%.

(b) Since the number of policies grows 5% in each region, next year’s numbers of policies
v1,2, . . . , v5,2 are given by

region 1 region 2 region 3 region 4 region 5
vi,2 52’564 10’642 127’376 36’797 4’402

Table 2: Next year’s numbers of policies in regions i = 1, . . . , 5.

Similarly to part (a), we define
Xi,2 = Ni,2

vi,2
,

for all i ∈ {1, . . . , 5}. According to the exercise sheet, next year’s numbers of claims stay
within the Bühlmann-Straub model framework assumed for this year’s numbers of claims.
Thus, according to formula (8.16) of the lecture notes (version of March 20, 2019), the mean
square error of prediction is given by, for all i ∈ {1, . . . , 5},

E

[(
Ni,2
vi,2
−̂̂
µ(Θi)

)2
]

= E

[(
Xi,2 −

̂̂
µ(Θi)

)2
]

= σ2

vi,2
+ (1− αi,T ) τ2. (1)

We get the following root mean square errors of prediction for the five regions:

region 1 region 2 region 3 region 4 region 5√
mean square errors of prediction 0.185% 0.408% 0.119% 0.221% 0.627%
in % of the credibility estimates 2.4% 5.2% 1.6% 2.2% 8.3%

Table 3: Root mean square errors of prediction in regions i = 1, . . . , 5.

Note that we get the highest root mean square errors of prediction for regions 2 and 5,
i.e. exactly for those regions for which we also have the lowest volumes and, consequently, the
lowest credibility weights. Of course, this is due to formula (1).
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Solution 12.2 (Homogeneous) Credibility Estimators for Claim Sizes

We define
Xi,t = Yi,t

vi,t
,

for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. Then, we have

E[Xi,t|Θi] = 1
vi,t

E[Yi,t|Θi] = 1
vi,t

µ(Θi)cvi,t
c

= µ(Θi)

and
Var(Xi,t|Θi) = 1

v2
i,t

Var(Yi,t|Θi) = 1
v2
i,t

µ(Θi)cvi,t
c2

= µ(Θi)
cvi,t

= σ2(Θi)
vi,t

,

with
σ2(Θi) = µ(Θi)

c
= Θi

c
,

for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. Moreover, using that

E[X2
i,t|Θi] = Var(Xi,t|Θi) + E[Xi,t|Θi]2 = µ(Θi)

cvi,t
+ µ(Θi)2 = Θi

cvi,t
+ Θ2

i ,

we get

E[X2
i,t] = E[E[X2

i,t|Θi]] = E
[

Θi

cvi,t
+ Θ2

i

]
< ∞

by assumption, for all i ∈ {1, 2, 3, 4} and t ∈ {1, 2}. In particular, Model Assumptions 8.12 of the
lecture notes (version of March 20, 2019) for the Bühlmann-Straub model are satisfied.

(a) First, following Theorem 8.16 of the lecture notes (version of March 20, 2019), we define the
observation based estimator X̂i,1:T as

X̂i,1:T = 1∑T
t=1 vi,t

T∑
t=1

vi,tXi,t = vi,1Xi,1 + vi,2Xi,2

vi,1 + vi,2
= Yi,1 + Yi,2

vi,1 + vi,2
,

for all i ∈ {1, 2, 3, 4}. Then, we need to estimate the structural parameters σ2 = E[σ2(Θ1)]
and τ2 = Var(µ(Θ1)). According to formula (8.14) of the lecture notes (version of March 20,
2019), σ2 can be estimated by

σ̂2
T = 1

I

I∑
i=1

1
T − 1

T∑
t=1

vi,t (Xi,t − X̂i,1:T )2 ≈ 1.3 · 1010.

In order to estimate τ2, we define first the weighted sample mean X̄ over all observations by

X̄ = ∑I
i=1
∑T
t=1 vi,t

I∑
i=1

T∑
t=1

vi,tXi,t =
∑I
i=1 Yi,1 + Yi,2∑I
i=1 vi,1 + vi,2

≈ 7’004.

Then, following the lecture notes, we define v̂2
T , cw and t̂2T as

v̂2
T = I

I − 1

I∑
i=1

vi,1 + vi,2∑I
j=1 vj,1 + vj,2

(
X̂i,1:T − X̄

)2
≈ 9.3 · 107,

cw = I − 1
I

[
I∑
i=1

vi,1 + vi,2∑I
j=1 vj,1 + vj,2

(
1− vi,1 + vi,2∑I

j=1 vj,1 + vj,2

)]−1

≈ 1.425
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and

t̂2T = cw

(
v̂2
T −

I σ̂2
T∑I

i=1 vi,1 + vi,2

)
≈ 1.25 · 108.

Then, using formula (8.15) of the lecture notes (version of March 20, 2019), τ2 is estimated by

τ̂2
T = max

{
t̂2T , 0

}
= t̂2T ≈ 1.25 · 108.

Now let i ∈ {1, 2, 3, 4}. According to Theorem 8.16 of the lecture notes (version of March 20,
2019), the homogeneous credibility estimator is given by

̂̂
µ(Θi)

hom

= αi,T X̂i,1:T + (1− αi,T ) µ̂T ,

with credibility weight αi,T and estimate µ̂T

αi,T = vi,1 + vi,2
vi,1 + vi,2 + σ̂2

T /τ̂
2
T

and µ̂T = 1∑I
i=1 αi,T

I∑
i=1

αi,T X̂i,1:T ≈ 14’538.

The results for the four risk classes are summarized in the following table:

risk class 1 risk class 2 risk class 3 risk class 4
αi,T 95.4% 98.4% 82.5% 89.6%
X̂i,1:T 10’493 1’907 18’375 29’197

̂̂
µ(Θi)

hom

10’677 2’107 17’702 27’665

Table 4: Estimated credibility weights αi,T , observation based estimates X̂i,1:T and homogeneous

credibility estimates ̂̂
µ(Θi)

hom

in risk classes i = 1, 2, 3, 4.

Looking at the credibility weights α1,T , α2,T , α3,T and α4,T , we see that the estimated
credibility coefficient κ̂ = σ̂2

T /τ̂
2
T ≈ 104 has the biggest impact on risk classes 3 and 4, where

we have less volumes compared to risk classes 1 and 2. As a result, the smoothing of the
observation based estimates X̂1,1:T , X̂2,1:T , X̂3,1:T and X̂4,1:T towards µ̂T ≈ 14’538 is strongest
for risk classes 3 and 4.

(b) Since the number of claims grows 5% in each risk class, next year’s numbers of claims
v1,3, . . . , v4,3 are given by

risk class 1 risk class 2 risk class 3 risk class 4
vi,3 1’167 3’468 262 479

Table 5: Next year’s numbers of claims in risk classes i = 1, 2, 3, 4.

Similarly to part (a), we define
Xi,3 = Yi,3

vi,3
,

for all i ∈ {1, 2, 3, 4}. According to the exercise sheet, next year’s total claim sizes stay within
the Bühlmann-Straub model framework assumed for the previous year’s total claim sizes.
Thus, according to formula (8.17) of the lecture notes (version of March 20, 2019), the mean
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square error of prediction can be estimated by, for all i ∈ {1, 2, 3, 4},

Ê

(Yi,3
vi,3
−̂̂
µ(Θi)

hom
)2
 = Ê

(Xi,3 −
̂̂
µ(Θi)

hom
)2


= σ̂2
T

vi,3
+ (1− αi,T )τ̂2

T

(
1 + 1− αi,T∑I

i=1 αi,T

)
.

(2)

We get the following estimated root mean square errors of prediction for the four risk classes:

risk class 1 risk class 2 risk class 3 risk class 4√
mean square errors of prediction 4’108 2’392 8’508 6’360
in % of the credibility estimates 38.5% 113.5% 48.1% 23.0%

Table 6: Estimated root mean square errors of prediction in risk classes i = 1, 2, 3, 4.

According to formula (2), the smaller the volumes in a particular risk class, the bigger the
corresponding estimated root mean square error of prediction. Moreover, note that these
estimated root mean square errors of prediction are rather high compared to the credibility
estimates, which indicates a high variability within the individual risk classes.

Solution 12.3 Degenerate MLE and the Poisson-Gamma Model

(a) We observe that Nt = 0 for all t = 1, . . . , T . In this case, the log-likelihood function `N (λ) of
the data N = (N1, . . . , NT ) for the unknown parameter λ > 0 is given by

`N (λ) =
T∑
t=1

log
(

exp{−λvt}
(λvt)Nt

Nt!

)
=

T∑
t=1

log (exp{−λvt}) = −λ
T∑
t=1

vt.

As the volumes v1, . . . , vT are positive, we see that `N (λ) increases as λ decreases, i.e. here
we are in the situation of a degenerate Poisson model with MLE λ̂T = 0. If we used this
degenerate model for premium calculations, we would get a pure risk premium of 0, as we do
not expect any claims. Of course, a model with zero pure risk premium does not make any
sense, i.e. we need to circumvent this degenerate case. This can be done for example with the
Poisson-gamma model considered in part (b).

(b) (i) The prior estimator λ0 of the unknown parameter Λ is given by

λ0 = E[Λ] = γ

c
= 1

50 .

According to Theorem 8.2 of the lecture notes (version of March 20, 2019), we have

Λ|N ∼ Γ
(
γ +

T∑
t=1

Nt, c+
T∑
t=1

vt

)
,

where we write N = (N1, . . . , NT ). Therefore, the posterior estimator λ̂post
T of the

unknown parameter Λ is given by

λ̂post
T = E[Λ|N ] =

γ +
∑T
t=1Nt

c+
∑T
t=1 vt

= 1 + 0
50 + 50 = 1

100 .
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(ii) According to Corollary 8.4 of the lecture notes (version of March 20, 2019), we can write

λ̂post
T = αT λ̂T + (1− αT )λ0

by setting

αT =
∑T
t=1 vt

c+
∑T
t=1 vt

∈ (0, 1).

In our case we get
αT = 50

50 + 50 = 1
2 .

Indeed, we check

αT λ̂T + (1− αT )λ0 = 1
2 · 0 +

(
1− 1

2

)
· 1

50 = 1
100 = λ̂post

T .

(iii) Similarly as in item (i), for the posterior estimator λ̂post
T+1, conditionally given data

(N1, v1), . . . , (NT+1, vT+1), we get

λ̂post
T+1 =

γ +
∑T+1
t=1 Nt

c+
∑T+1
t=1 vt

= 1 + 1
50 + 60 = 2

110 .

According to Corollary 8.6 of the lecture notes (version of March 20, 2019), we can write

λ̂post
T+1 = βT+1

NT+1

vT+1
+ (1− βT+1) λ̂post

T

by setting
βT+1 = vT+1

c+
∑T+1
t=1 vt

∈ (0, 1).

In our case we get
βT+1 = 10

50 + 60 = 1
11 .

Indeed, we check

βT+1
NT+1

vT+1
+(1−βT+1) λ̂post

T = 1
11

1
10 +

(
1− 1

11

)
1

100 = 1
110 + 1

110 = 2
110 = λ̂post

T+1.

(c) Note that, by definition, a Poisson random variable requires a positive frequency parameter.
In case of a frequency parameter which is equal to 0, we are in the degenerate Poisson model,
see also part (a). However, if Λ ∼ N (µ, σ2), then the probability that Λ is negative is given
by

P[Λ < 0] = P
[

Λ− µ
σ

< −µ
σ

]
= Φ

(
−µ
σ

)
> 0,

where Φ denotes the distribution function of a standard Gaussian distribution. As there
is a positive probability that the frequency parameter Λ is negative, we conclude that a
Poisson-normal model is not well-defined and, thus, not reasonable.

Updated: November 22, 2020 6 / 8



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2020 Solution sheet 12

Solution 12.4 Pareto-Gamma Model

(a) Let fY |Λ denote the density of Y |Λ and fΛ the density of Λ. Then, we have

fY |Λ(y1, . . . , yT |Λ = α) =
T∏
t=1

α

θ

(yt
θ

)−(α+1)
· 1{yt≥θ}

= αT θ−T

(
T∏
t=1

yt
θ

)−α( T∏
t=1

yt
θ

)−1

· 1{yt≥θ}

and
fΛ(α) = cγ

Γ(γ)α
γ−1 exp{−cα} · 1{α>0}.

Let fΛ|Y denote the density of Λ|Y . Then, for all α > 0 and y1, . . . , yT ≥ θ, we have

fΛ|Y (α|Y1 = y1, . . . , YT = yT ) =
fY |Λ(y1, . . . , yT |Λ = α) fΛ(α)∫∞

0 fY |Λ(y1, . . . , yT |Λ = x) fΛ(x) dx

∝ αT

(
T∏
t=1

yt
θ

)−α
αγ−1 exp{−cα}

= αγ+T−1 exp
{
−α

T∑
t=1

log yt
θ

}
exp{−cα}

= αγ+T−1 exp
{
−α

(
T∑
t=1

log yt
θ

+ c

)}
.

We conclude that

Λ|Y ∼ Γ
(
γ + T, c+

T∑
t=1

log Yt
θ

)
.

(b) First, we observe that

λ0 = E[Λ] = γ

c
and λ̂post

T = E[Λ|Y ] = γ + T

c+
∑T
t=1 log Yt

θ

.

Then, we can write

λ̂post
T = γ + T

c+
∑T
t=1 log Yt

θ

=
∑T
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

T∑T
t=1 log Yt

θ

+ c

c+
∑T
t=1 log Yt

θ

γ

c

= αT λ̂T + (1− αT )λ0,

with

αT =
∑T
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

.

(c) For the (conditional mean square error) uncertainty of the posterior estimator λ̂post
T = E[Λ|Y ]

we have

E
[(

Λ− λ̂post
T

)2
∣∣∣∣Y ] = E

[
(Λ− E[Λ|Y ])2

∣∣∣∣Y ] = Var (Λ|Y ) = γ + T(
c+

∑T
t=1 log Yt

θ

)2

= 1
c+

∑T
t=1 log Yt

θ

λ̂post
T = (1− αT ) 1

c
λ̂post
T .
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(d) Analogously to λ̂post
T , the posterior estimator λ̂post

T−1 in the sub-model where we only have
observed (Y1, . . . , YT−1) is given by

λ̂post
T−1 = γ + T − 1

c+
∑T−1
t=1 log Yt

θ

.

Thus, we can write

λ̂post
T = γ + T

c+
∑T
t=1 log Yt

θ

=
log YT

θ

c+
∑T
t=1 log Yt

θ

1
log YT

θ

+
c+

∑T−1
t=1 log Yt

θ

c+
∑T
t=1 log Yt

θ

γ + T − 1
c+

∑T−1
t=1 log Yt

θ

= βT
1

log YT

θ

+ (1− βT ) λ̂post
T−1,

with

βT =
log YT

θ

c+
∑T
t=1 log Yt

θ

.

Remark: Suppose we want to use the observations Y1, . . . , YT−1 in order to estimate YT in a
Bayesian sense. Then, we have

E[YT |Y1, . . . , YT−1] = E [E [YT |Y1, . . . , YT−1,Λ] |Y1, . . . , YT−1] a.s.
= E [E [YT |Λ] |Y1, . . . , YT−1] a.s.,

where in the second equality we used that, conditionally given Λ, Y1, . . . , YT are independent.
Now, by assumption,

YT |Λ ∼ Pareto(θ,Λ).

In particular, E[YT |Λ] <∞ if and only if Λ > 1. However, according to part (a) (for T − 1
instead of T observations), we have

Λ|(Y1, . . . , YT−1) ∼ Γ
(
γ + T − 1, c+

T−1∑
t=1

log Yt
θ

)
.

Since the range of a gamma distribution is the whole positive real line, this implies that

0 < P [Λ ≤ 1|Y1, . . . , YT−1] = P [E [YT |Λ] =∞|Y1, . . . , YT−1] a.s.

We conclude that
E[YT |Y1, . . . , YT−1] = ∞ a.s.
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