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Solution 13.1 Chain-Ladder Algorithm

(a) According to formula (9.5) of the lecture notes (version of March 20, 2019), the CL factor fj

can be estimated by

f̂CL
j =

∑I−j−1
i=1 Ci,j+1∑I−j−1

i=1 Ci,j

=
I−j−1∑

i=1

Ci,j∑I−j−1
n=1 Cn,j

Ci,j+1

Ci,j
,

for all j = 0, . . . , J − 1. Then, for all i = 2, . . . , I and j = 1, . . . , J with i+ j > I, Ci,j can be
predicted by

ĈCL
i,j = Ci,I−i

j−1∏
k=I−i

f̂CL
k ,

see formula (9.6) of the lecture notes (version of March 20, 2019). In particular, for the
prediction ĈCL

i,J of the ultimate claim Ci,J we have, for all i = 2, . . . , I,

ĈCL
i,J = Ci,I−i

J−1∏
j=I−i

f̂CL
j . (1)

The estimates f̂CL
0 , . . . , f̂CL

J−1 and the prediction of the lower triangle Dc
I are given in Table 1.

We see that f̂CL
0 ≈ 1.5, while f̂CL

j is close to 1 for all j = 1, . . . , J − 1, i.e. we observe a rather
fast claims settlement in this example.

accident development year j
year i 0 1 2 3 4 5 6 7 8 9

1
2 10’663’318
3 10’646’884 10’662’008
4 9’734’574 9’744’764 9’758’606
5 9’837’277 9’847’906 9’858’214 9’872’218
6 10’005’044 10’056’528 10’067’393 10’077’931 10’092’247
7 9’419’776 9’485’469 9’534’279 9’544’580 9’554’571 9’568’143
8 8’445’057 8’570’389 8’630’159 8’674’568 8’683’940 8’693’030 8’705’378
9 8’243’496 8’432’051 8’557’190 8’616’868 8’661’208 8’670’566 8’679’642 8’691’971
10 8’470’989 9’129’696 9’338’521 9’477’113 9’543’206 9’592’313 9’602’676 9’612’728 9’626’383
f̂CL

j 1.493 1.078 1.023 1.015 1.007 1.005 1.001 1.001 1.001

Table 1: Estimates f̂CL
0 , . . . , f̂CL

J−1 and prediction of the lower triangle Dc
I .

(b) The CL reserves R̂CL
i at time t = I are given by

R̂CL
i = ĈCL

i,J − Ci,I−i = Ci,I−i

 J−1∏
j=I−i

f̂CL
j − 1

 ,

for all accident years i = 2, . . . , I. Moreover, since C1,J = C1,I−1 is known, we have R̂CL
1 = 0.
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Summarizing, we get the following CL reserves R̂CL
i :

accident year i 1 2 3 4 5 6 7 8 9 10
CL reserves R̂CL

i 0 15’126 26’257 34’538 85’302 156’494 286’121 449’167 1’043’242 3’950’815

Table 2: CL reserves R̂CL
i for all accident years i = 1, . . . , I.

By aggregating the CL reserves over all accident years, we get the CL predictor R̂CL for the
outstanding loss liabilities of past exposure claims:

R̂CL =
I∑

i=1
R̂CL

i = 6’047’061.

Solution 13.2 Bornhuetter-Ferguson Algorithm

(a) Let C0 > 0 be some initial value for development period j = 0. Then, for all j = 0, . . . , J − 1
we define β̂CL

j to be the proportion paid after the first j development periods according to
the estimated CL pattern from Exercise 13.1. In particular, we calculate

β̂CL
0 = C0

C0
∏J−1

l=0 f̂CL
l

= 1∏J−1
l=0 f̂CL

l

=
J−1∏
l=0

1
f̂CL

l

and

β̂CL
j =

C0
∏j−1

l=0 f̂
CL
l

C0
∏J−1

l=0 f̂CL
l

=
∏j−1

l=0 f̂
CL
l∏J−1

l=0 f̂CL
l

=
J−1∏
l=j

1
f̂CL

l

,

for all j = 1, . . . , J − 1. We get the following proportions:

development period j 0 1 2 3 4 5 6 7 8
proportion β̂CL

j paid so far 0.590 0.880 0.948 0.970 0.984 0.991 0.996 0.998 0.999

Table 3: Proportions β̂CL
j paid after the first j development periods according to the estimated CL

pattern from Exercise 13.1.

According to formula (9.8) of the lecture notes (version of March 20, 2019), in the Bornhuetter-
Ferguson method the ultimate claim Ci,J is predicted by

ĈBF
i,J = Ci,I−i + µ̂i

(
1− β̂CL

I−i

)
,

for all accident years i = 2, . . . , I. Thus, the Bornhuetter-Ferguson reserves R̂BF
i are given by

R̂BF
i = ĈBF

i,J − Ci,I−i = µ̂i

(
1− β̂CL

I−i

)
,

for all accident years i = 2, . . . , I. Moreover, since C1,J = C1,I−1 is known, we have R̂BF
1 = 0.

Updated: November 22, 2020 2 / 7



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2020 Solution sheet 13

Summarizing, we get the following BF reserves R̂BF
i :

accident year i 1 2 3 4 5 6 7 8 9 10
BF reserves R̂BF

i 0 16’124 26’998 37’575 95’434 178’024 341’305 574’089 1’318’646 4’768’384

Table 4: BF reserves R̂BF
i for all accident years i = 1, . . . , I.

By aggregating the BF reserves over all accident years, we get the BF predictor R̂BF for the
outstanding loss liabilities of past exposure claims:

R̂BF =
I∑

i=1
R̂BF

i = 7’356’580.

(b) Note that for accident year i = 1 we have

R̂CL
1 = 0 = R̂BF

1 .

Now let i = 2, . . . , I. Then, we observe that

R̂CL
i < R̂BF

i .

This can be explained as follows: Equation (1) can be rewritten as

ĈCL
i,J = Ci,I−i

J−1∏
j=I−i

f̂CL
j = Ci,I−i + Ci,I−i

 J−1∏
j=I−i

f̂CL
j − 1


= Ci,I−i + Ci,I−i

J−1∏
j=I−i

f̂CL
j

1−
J−1∏

j=I−i

1
f̂CL

j

 = Ci,I−i + ĈCL
i,J

(
1− β̂CL

I−i

)
.

Comparing this to
ĈBF

i,J = Ci,I−i + µ̂i

(
1− β̂CL

I−i

)
and noting that for the prior information µ̂i we have µ̂i > ĈCL

i,J , we immediately see that

ĈCL
i,J < ĈBF

i,J ,

which of course implies that

R̂CL
i = ĈCL

i,J − Ci,I−i < ĈBF
i,J − Ci,I−i = R̂BF

i .

We conclude that choosing a prior information µ̂i which is bigger than the estimated CL
ultimate ĈCL

i,J leads to more conservative, i.e. higher reserves in the Bornhuetter-Ferguson
method compared to the chain-ladder method.
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Solution 13.3 Over-Dispersed Poisson Model

(a) According to Theorem 9.11 of the lecture notes (version of March 20, 2019), the MLEs
µ̂MLE

1 , . . . , µ̂MLE
I and γ̂MLE

0 , . . . , γ̂MLE
J of µ1, . . . , µI and γ0, . . . , γJ are given by

µ̂MLE
i = ĈCL

i,J and γ̂MLE
j =

(
1− 1

f̂CL
j−1

)
J−1∏
k=j

1
f̂CL

k

,

for all i = 1, . . . , I and j = 1, . . . , J−1, where ĈCL
i,J is the prediction of the ultimate claim Ci,J

and f̂j the estimated CL factor fj from the chain-ladder model of Exercise 13.1. Moreover,
we have

γ̂MLE
0 =

J−1∏
k=0

1
f̂CL

k

and γ̂MLE
J =

(
1− 1

f̂CL
J−1

)
.

The values of the MLEs µ̂MLE
1 , . . . , µ̂MLE

I are given in Table 5, the values of the MLEs
γ̂MLE

0 , . . . , γ̂MLE
J in Table 6.

accident year i 1 2 3 4 5
MLE µ̂MLE

i 11’148’124 10’663’318 10’662’008 9’758’606 9’872’218
accident year i 6 7 8 9 10
MLE µ̂MLE

i 10’092’247 9’568’143 8’705’378 8’691’971 9’626’383

Table 5: Values of the MLEs µ̂MLE
1 , . . . , µ̂MLE

I .

development year j 0 1 2 3 4 5 6 7 8 9
MLE γ̂MLE

j 0.590 0.290 0.068 0.022 0.014 0.007 0.005 0.001 0.001 0.001

Table 6: Values of the MLEs γ̂MLE
0 , . . . , γ̂MLE

J .

(b) According to Theorem 9.11 of the lecture notes (version of March 20, 2019), the ODP reserves
R̂ODP

i are given by

R̂ODP
i = µ̂MLE

i

J∑
j=I−i+1

γ̂MLE
j ,

for all accident years i = 2, . . . , I. Moreover, since C1,J = C1,I−1 is known, we have R̂ODP
1 = 0.

Summarizing, we get the following ODP reserves R̂ODP
i :

accident year i 1 2 3 4 5 6 7 8 9 10
ODP reserves R̂ODP

i 0 15’126 26’257 34’538 85’302 156’494 286’121 449’167 1’043’242 3’950’815

Table 7: ODP reserves R̂ODP
i for all accident years i = 1, . . . , I.

We observe that R̂ODP
i = R̂CL

i for all accident years i = 1, . . . , I, where R̂CL
i are the CL

reserves from Exercise 13.1. As a matter of fact, this observation holds true in general, see
Theorem 9.11 of the lecture notes (version of March 20, 2019). By aggregating the ODP
reserves over all accident years, we get the ODP predictor R̂ODP for the outstanding loss
liabilities of past exposure claims (which is equal to the CL predictor R̂CL):

R̂ODP =
I∑

i=1
R̂ODP

i = 6’047’061 =
I∑

i=1
R̂CL

i = R̂CL.
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(c) As the ODP model belongs to the family of GLM models, we can calculate the ODP reserves
also using the GLM machinery. In particular, we work with the two risk characteristics
accident year i, with parameters β1,1, . . . , β1,I , and development year j, with parameters
β2,0, . . . , β2,J , where β1,i corresponds to accident year i and β2,j to development year j.
Compared to the parametrization on the exercise sheet, in order to apply GLM techniques,
we use the following re-parametrization. We assume that all Xi,j are independent with

Xi,j

φ
∼ Poi(λi,j/φ),

for all risk classes (i, j), 1 ≤ i ≤ I, 0 ≤ j ≤ J , where λi,j denotes the mean parameter. Note
that we work with volumes which are constantly equal to 1. Moreover, in a Poisson GLM
model we would set φ = 1. Here we assume a general dispersion parameter φ > 0. We have

E[Xi,j ] = φE
[
Xi,j

φ

]
= φ

λi,j

φ
= λi,j ,

and we model
g(λi,j) = g(E[Xi,j ]) = β0 + β1,i + β2,j ,

where β0 ∈ R and where we use the log-link function, i.e. g(·) = log(·). In order to get a
unique solution, we set β1,1 = β2,0 = 0. We refer to Listing 1 for the application of this
over-dispersed Poisson GLM model in R.

Listing 1: R code for Exercise 13.3 (c).
1 ### Load the required packages
2 library ( readxl )
3 library (plyr)
4
5 ### Download the data from the link indicated on the exercise sheet
6 ### Store the data under the name " Exercise13Data .xls" in the same folder as this R code
7 ### Load the data
8 data <- read_excel (" Exercise13Data .xls", sheet =" Data_1 ", range =" B22:K31", col_names = FALSE )
9

10 ### ODP as GLM Model
11 data2 <- as.data. frame (data)
12 data2 [ ,2:10] <- data2 [ ,2:10] - data2 [ ,1:9]
13 data2 <- stack (data2 , select =c(" X__1 "," X__2 "," X__3 "," X__4 "," X__5 "," X__6 "," X__7 "," X__8 "," X__9",
14 " X__10 "))
15 data2 [ ,2] <- rep (1:10)
16 data2 [ ,3] <- rep (0:9 , each =10)
17 colnames ( data2 )[2:3] <- c(" AY","DY ")
18 data2$AY <- as. factor ( data2$AY )
19 data2$DY <- as. factor ( data2$DY )
20 lower .ind <- is.na( data2 [ ,1])
21 upper <- data2 [is.na( data2 [ ,1])== FALSE ,]
22 lower <- data2 [is.na( data2 [ ,1]) ,]
23 ODP <- glm( values ~ AY+DY , data=upper , family = quasipoisson ())
24 lower [ ,1] <- predict (ODP , newdata =lower , " response ")
25 ODP.GLM. reserves <- rep (0 ,10)
26 ODP.GLM. reserves [1] <- 0
27 ODP.GLM. reserves [2:10] <- ddply (lower , .( AY), summarise , reserves =sum( values ))[ ,2]
28 round (ODP.GLM. reserves )
29
30 ### MLEs for the accident years
31 exp(c(0, ODP$coefficients [2:10])+ ODP$coefficients [1])* sum(exp(c(0, ODP$coefficients [11:19])))
32
33 ### MLEs for the development years
34 round (exp(c(0, ODP$coefficients [11:19]))/ sum(exp(c(0, ODP$coefficients [11:19]))) ,3)

Running the R code of Listing 1, we can confirm that the ODP GLM model leads to
the same reserves as the CL method. In order to check the MLE parameters of Tables 5
and 6, we have to go back to the parametrization used on the exercise sheet. We write
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β̂MLE
0 , β̂MLE

1,1 , . . . , β̂MLE
1,I , β̂MLE

2,0 , . . . , β̂MLE
2,J for the resulting MLEs of the ODP GLM model. By

setting

µ̃i = exp
{
β̂MLE

0 + β̂MLE
1,i

} J∑
k=0

exp
{
β̂MLE

2,k

}
,

for all i = 1, . . . , I, and

γ̃j =
exp

{
β̂MLE

2,j

}
∑J

k=0 exp
{
β̂MLE

2,k

} ,
for all j = 0, . . . , J , we get

λ̂MLE
i,j = exp

{
β̂MLE

0 + β̂MLE
1,i + β̂MLE

2,j

}
= exp

{
β̂MLE

0 + β̂MLE
1,i

} J∑
k=0

exp
{
β̂MLE

2,k

} exp
{
β̂MLE

2,j

}
∑J

k=0 exp
{
β̂MLE

2,k

}
= µ̃iγ̃i.

In particular, we get back to the parametrization used on the exercise sheet. The values of
µ̃i, i = 1, . . . , I and γ̃j , j = 0, . . . , J , are calculated on lines 26 and 29 of Listing 1. We can
confirm that we get the same values as in Tables 5 and 6.

Solution 13.4 Mack’s Formula and Merz-Wüthrich (MW) Formula

(a) The R code used in this exercise is provided in Listing 2. We get the following results:

accident CL reserves
√
total msep in % of the

√
CDR msep in % of the

year i R̂CL
i (Mack) reserves (MW)

√
total msep

1 0 − − − −
2 15’126 267 1.8 % 267 100 %
3 26’257 914 3.5 % 884 97 %
4 34’538 3’058 8.9 % 2’948 96 %
5 85’302 7’628 8.9 % 7’018 92 %
6 156’494 33’341 21.3 % 32’470 97 %
7 286’121 73’467 25.7 % 66’178 90 %
8 449’167 85’398 19.0 % 50’296 59 %
9 1’043’242 134’337 12.9 % 104’311 78 %
10 3’950’815 410’817 10.4 % 385’773 94 %

total 6’047’061 462’960 7.7 % 420’220 91 %

Table 8: CL reserves R̂CL
i , Mack’s square-rooted conditional mean square errors of prediction and

MW’s square-rooted conditional mean square errors of prediction for all accident years i = 1, . . . , I.

(b) Mack’s square-rooted conditional mean square errors of prediction give us confidence bounds
around the CL reserves. We see that for the total claims reserves the one standard deviation
confidence bounds are 7.7%. The biggest uncertainties can be found for accident years 6, 7
and 8, where the one standard deviation confidence bounds are roughly 20% or even higher.

(c) MW’s square-rooted conditional mean square errors of prediction measure the contribution of
the next accounting year to the total (run-off) uncertainty given by Mack’s square-rooted
conditional mean square errors of prediction. For aggregated accident years, we see that 91%
of the total uncertainty is due to the next accounting year. This high value can be explained
by the fast claims settlement already discovered in Exercise 13.1, (a).
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Listing 2: R code for Exercise 13.4 (a).
1 ### Load the required packages
2 library ( readxl )
3 library ( ChainLadder )
4
5 ### Download the data from the link indicated on the exercise sheet
6 ### Store the data under the name " Exercise13Data .xls" in the same folder as this R code
7 ### Load the data
8 data <- read_excel (" Exercise13Data .xls", sheet =" Data_1 ", range =" B22:K31", col_names = FALSE )
9

10 ### Bring the data in the appropriate triangular form and label the axes
11 tri <- as. triangle (as. matrix (data ))
12 dimnames (tri )= list( origin =1: nrow(tri),dev =1: ncol(tri ))
13
14 ### Calculate the CL reserves and the corresponding mseps
15 M <- MackChainLadder (tri , est. sigma =" Mack ")
16
17 ### CL reserves and Mack ’s square - rooted mseps ( including illustrations )
18 M
19 plot(M)
20 plot(M, lattice =TRUE)
21
22 ### CL reserves , MW ’s square - rooted mseps and Mack ’s square - rooted mseps
23 CDR(M)
24
25 ### Mack ’s square - rooted mseps in % of the reserves
26 round (CDR(M)[ ,3]/ CDR(M)[ ,1] ,3)*100
27
28 ### MW ’s square - rooted mseps in % of Mack ’s square - rooted mseps
29 round (CDR(M)[ ,2]/ CDR(M)[ ,3] ,2)*100
30
31 ### Full uncertainty picture
32 CDR(M, dev =" all ")
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