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Solution 6.1 Goodness-of-Fit Test

(a) Let Y be a random variable following a Pareto distribution with threshold θ = 200 and tail
index α = 1.25. Then, the distribution function G of Y is given by

G(x) = 1−
(x
θ

)−α
= 1−

( x

200

)−1.25
,

for all x ≥ θ. For example for the interval I2 we then have

P[Y ∈ I2] = P[239 ≤ Y < 301] = G(301)−G(239) = 0.2.

By analogous calculations for the other four intervals, we get

P[Y ∈ I1] = P[Y ∈ I2] = P[Y ∈ I3] = P[Y ∈ I4] = P[Y ∈ I5] ≈ 0.2.

Let Ok denote the actual number of observations and Ek the expected number of observations
in interval Ik, for all k ∈ {1, . . . , 5}. The test statistic

X2
n,5 =

5∑
k=1

(Ok − Ek)2

Ek

of the χ2-goodness-of-fit test using K = 5 intervals and n observations converges to a χ2-
distribution with K − 1 = 5 − 1 = 4 degrees of freedom, as n → ∞. As we have n = 20
observations in our data, we can calculate Ek as

Ek = 20 · P[Y ∈ Ik] = 20 · 0.2 ≈ 4,

for all k = 1, . . . , 5. The values of the actual numbers of observations Ok and the expected
numbers of observations Ek in the five intervals k = 1, . . . , 5 as well as their squared differences
(Ok − Ek)2 are summarized in Table 1.

k 1 2 3 4 5
Ok 4 0 8 6 2
Ek 4 4 4 4 4

(Ok − Ek)2 0 16 16 4 4

Table 1: Actual and expected numbers of observations with squared differences.

With the numbers in Table 1, the test statistic of the χ2-goodness-of-fit test using 5 intervals
in the case of our n = 20 observations is given by

X2
20,5 =

5∑
k=1

(Ok − Ek)2

Ek
= 0

4 + 16
4 + 16

4 + 4
4 + 4

4 = 10.

Let α = 5%. Then, the (1− α)-quantile of the χ2-distribution with 4 degrees of freedom is
given by approximately 9.49. Since this is smaller than X2

20,5, we can reject the null hypothesis
of having a Pareto distribution with threshold θ = 200 and tail index α = 1.25 as claim size
distribution at significance level of 5%.
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(b) We assume that we have n i.i.d. observations Y1, . . . , Yn from the null hypothesis distribution
and that we work with K = 2 disjoint intervals I1 and I2. We define

p = P[Y1 ∈ I1]

and
Xi = 1{Yi∈I1},

for all i = 1, . . . , n. This implies that X1, . . . , Xn
i.i.d.∼ Bernoulli(p). Thus, we have

µ
def= E[X1] = p and σ

def=
√

Var(X1) =
√
p(1− p).

Moreover, we can write

O1 =
n∑
i=1

Xi and O2 = n−O1 = n−
n∑
i=1

Xi

as well as

E1 = E

[
n∑
i=1

Xi

]
= np and E2 = E

[
n−

n∑
i=1

Xi

]
= n− np = n(1− p).

Therefore, we get

X2
n,2 =

2∑
k=1

(Ok − Ek)2

Ek
= (O1 − np)2

np
+ [n−O1 − n(1− p)]2

n(1− p)

= (O1 − np)2
[

1
np

+ 1
n(1− p)

]
= (O1 − np)2 1

np(1− p)

=
(∑n

i=1 Xi − nµ√
nσ

)2

.

Let Z ∼ N (0, 1) and χ2
1 follow a χ2-square distribution with one degree of freedom. According

to the central limit theorem, see equation (1.2) of the lecture notes (version of March 20,
2019), we have ∑n

i=1 Xi − nµ√
nσ

=⇒ Z, as n→∞.

As Z2 (d)= χ2
1, see Exercise 1.4, we can conclude that

X2
n,2 =⇒ Z2 (d)= χ2

1, as n→∞.

Solution 6.2 Log-Normal Distribution and Deductible

(a) Let X ∼ N (µ, σ2). Then, the moment generating function MX of X is given by

MX(r) = E [exp{rX}] = exp
{
rµ+ r2σ2

2

}
,

for all r ∈ R, see Exercise 1.3. Since Y1 has a log-normal distribution with mean parameter µ
and variance parameter σ2, we have

Y1
(d)= exp{X}.
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Hence, the expectation, the variance and the coefficient of variation of Y1 can be calculated as

E[Y1] = E [exp{X}] = E [exp{1 ·X}] = MX(1) = exp
{
µ+ σ2

2

}
,

Var(Y1) = E[Y 2
1 ]− E[Y1]2 = E [exp{2X}]−MX(1)2 = MX(2)−MX(1)2

= exp
{

2µ+ 4σ2

2

}
− exp

{
2µ+ 2σ

2

2

}
= exp

{
2µ+ σ2} (exp

{
σ2}− 1

)
and

Vco(Y1) =
√

Var(Y1)
E[Y1] =

exp
{
µ+ σ2/2

}√
exp {σ2} − 1

exp {µ+ σ2/2} =
√

exp {σ2} − 1.

(b) From part (a) we know that

σ =
√

log[Vco(Y1)2 + 1] and

µ = logE[Y1]− σ2

2 .

Since E[Y1] = 3’000 and Vco(Y1) = 4, we get

σ =
√

log(42 + 1) ≈ 1.68 and

µ ≈ log 3’000− (1.68)2

2 ≈ 6.59.

(i) The claim frequency λ is given by λ = E[N ]/v. With the introduction of the deductible
d = 500, the number of claims changes to

Nnew =
N∑
i=1

1{Yi>d}.

Using the independence of N and Y1, Y2, . . . , we get

E[Nnew] = E

[
N∑
i=1

1{Yi>d}

]
= E[N ]E[1{Y1>d}] = E[N ]P[Y1 > d].

Let Φ denote the distribution function of a standard Gaussian distribution. Since log Y1
has a Gaussian distribution with mean µ and variance σ2, we have

P[Y1 > d] = 1− P[Y1 ≤ d] = 1− P
[

log Y1 − µ
σ

≤ log d− µ
σ

]
= 1− Φ

(
log d− µ

σ

)
.

Hence, the new claim frequency λnew is given by

λnew = E[Nnew]/v = E[N ]P[Y1 > d]/v = λP[Y1 > d] = λ

[
1− Φ

(
log d− µ

σ

)]
.

Inserting the values of d, µ and σ, we get

λnew ≈ λ

[
1− Φ

(
log 500− 6.59

1.68

)]
≈ 0.59 · λ.

Note that the introduction of this deductible reduces the administrative burden a lot,
because we expect that 41% of the claims disappear.
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(ii) With the introduction of the deductible d = 500, the claim sizes change to

Y new
i = Yi − d |Yi > d.

Thus, the new expected claim size is given by

E[Y new
1 ] = E[Y1 − d|Y1 > d] = e(d),

where e(d) is the mean excess function of Y1 above d. According to page 67 of the lecture
notes (version of March 20, 2019), e(d) is given by

e(d) = E[Y1]

1− Φ
(

log d−µ−σ2

σ

)
1− Φ

(
log d−µ

σ

)
− d.

Inserting the values of d, µ, σ and E[Y1], we get

E[Y new
1 ] ≈ 3’000

1− Φ
(

log 500−6.59−1.682

1.68

)
1− Φ

(
log 500−6.59

1.68

)
− 500 ≈ 4’456 ≈ 1.49 · E[Y1].

(iii) According to Proposition 2.2 of the lecture notes (version of March 20, 2019), the
expected total claim amount E[S] is given by

E[S] = E[N ]E[Y1].

With the introduction of the deductible d = 500, the total claim amount S changes to
Snew, which can be written as

Snew =
Nnew∑
i=1

Y new
i .

Hence, the expected total claim amount changes to

E[Snew] = E[Nnew]E[Y new
1 ] = E[N ]P[Y1 > d]e(d) ≈ 0.59 · E[N ] · 1.49 · E[Y1]

≈ 0.87 · E[S].

In particular, the insurance company can grant a discount of roughly 13% on the pure
risk premium. Note that also the administrative expenses on claims handling will reduce
substantially because we only have 59% of the original claims, see the result in (i).

Solution 6.3 Kolmogorov-Smirnov Test

The distribution function G0 of a Weibull distribution with shape parameter τ = 1
2 and scale

parameter c = 1 is given by
G0(y) = 1− exp

{
−y1/2

}
,

for all y ≥ 0. Since G0 is continuous, we are indeed allowed to apply a Kolmogorov-Smirnov test.
If x = (− log u)2 for some u ∈ (0, 1), we have

G0(x) = 1− exp
{
−
[
(− log u)2]1/2

}
= 1− exp {log u} = 1− u.

Hence, if we evaluate G0 at our data points x1, . . . , x5, we get

G0(x1) = 2
40 , G0(x2) = 3

40 , G0(x3) = 5
40 , G0(x4) = 6

40 , G0(x5) = 30
40 .
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We write Ĝn for the empirical distribution function of a sample with n data points. The Kolmogorov-
Smirnov test statistic Dn is then defined as

Dn = sup
y∈R

∣∣∣Ĝn(y)−G0(y)
∣∣∣ ,

and
√
nDn converges to the Kolmogorov distribution K, as n → ∞. The empirical distribution

function Ĝ5 of the sample x1, . . . , x5 is given by

Ĝ5(y) =



0 if y < x1,
1/5 if x1 ≤ y < x2,
2/5 if x2 ≤ y < x3,
3/5 if x3 ≤ y < x4,
4/5 if x4 ≤ y < x5,
1 if y ≥ x5.

Since G0 is continuous and strictly increasing with range [0, 1) and Ĝ5 is piecewise constant and
attains both the values 0 and 1, it is sufficient to consider the discontinuities of Ĝ5 to determine
the Kolmogorov-Smirnov test statistic D5 for our n = 5 data points. We define

f(s−) = lim
r↗s

f(r),

for all s ∈ R, where the function f stands for G0 and Ĝ5. Since G0 is continuous, we have
G0(s−) = G0(s) for all s ∈ R. The values of G0 and Ĝ5 and their differences (in absolute value)
are summarized in Table 2.

xi, xi− x1− x1 x2− x2 x3− x3 x4− x4 x5− x5

Ĝ5(·) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
G0(·) 2/40 2/40 3/40 3/40 5/40 5/40 6/40 6/40 30/40 30/40

|Ĝ5(·)−G0(·)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

Table 2: Values of G0 and Ĝ5 and their differences (in absolute value).

From Table 2 we see for the Kolmogorov-Smirnov test statistic D5 that

D5 = sup
y∈R

∣∣∣Ĝ5(y)−G0(y)
∣∣∣ = 26/40 = 0.65.

Let q = 5%. By writing K←(1 − q) for the (1 − q)-quantile of the Kolmogorov distribution, we
have K←(1− q) = 1.36, see page 81 of the lecture notes (version of March 20, 2019). Since

K←(1− q)√
5

≈ 0.61 < 0.65 = D5,

we can reject the null hypothesis (at significance level of 5%) that the data x1, . . . , x5 comes from a
Weibull distribution with shape parameter τ = 1

2 and scale parameter c = 1.

Solution 6.4 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs
(
γ̂MLE, ĉMLE) maximize the log-likelihood function `Y. In particular,

we have
`Y
(
γ̂MLE, ĉMLE) ≥ `Y (γ, c) ,

for all (γ, c) ∈ R+ × R+.
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If we write dMM and dMLE for the number of estimated parameters in the method of moments
model and in the MLE model, respectively, we have dMM = dMLE = 2. The AIC value AICMM

of the method of moments model and the AIC value AICMLE of the MLE model are then
given by

AICMM = −2`Y
(
γ̂MM, ĉMM)+ 2dMM = −2 · 1’264.013 + 2 · 2 = −2’524.026 and

AICMLE = −2`Y
(
γ̂MLE, ĉMLE)+ 2dMLE = −2 · 1’264.171 + 2 · 2 = −2’524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AICMM > AICMLE, we choose the MLE fit.

(b) If we write dgam and dexp for the number of estimated parameters in the gamma model and in
the exponential model, respectively, we have dgam = 2 and dexp = 1. The AIC value AICgam

of the gamma model and the AIC value AICexp of the exponential model are then given by

AICgam = −2`gam
Y

(
γ̂MLE, ĉMLE)+ 2dgam = −2 · 1’264.171 + 2 · 2 = −2’524.342 and

AICexp = −2`exp
Y
(
ĉMLE)+ 2dexp = −2 · 1’264.169 + 2 · 1 = −2’526.338.

Since AICgam > AICexp, we choose the exponential model.
The BIC value BICgam of the gamma model and the BIC value BICexp of the exponential
model are given by

BICgam = −2`gam
Y

(
γ̂MLE, ĉMLE)+ dgam · logn = −2 · 1’264.171 + 2 · log 1’000 ≈ −2’514.53

and

BICexp = −2`exp
Y
(
ĉMLE)+ dexp · logn = −2 · 1’264.169 + log 1’000 ≈ −2’521.43.

According to the BIC, the model with the smallest BIC value should be preferred. Since
BICgam > BICexp, we choose the exponential model.
Note that the gamma model gives the better in-sample fit than the exponential model. But
if we adjust this in-sample fit by the number of parameters used, we conclude that the
exponential model probably has the better out-of-sample performance (better predictive
power).
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