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Solution 6.1 Goodness-of-Fit Test

(a) Let Y be a random variable following a Pareto distribution with threshold § = 200 and tail
index o« = 1.25. Then, the distribution function G of Y is given by

1 (5) "1 ()

for all x > 6. For example for the interval Is we then have
PlY € I,] = P[239 <Y < 301] = G(301) — G(239) = 0.2.
By analogous calculations for the other four intervals, we get
PYel )] =PYelh) =PYelz] =PY el =PYel;] = 0.2

Let Oy, denote the actual number of observations and Ej the expected number of observations
in interval Iy, for all k£ € {1,...,5}. The test statistic

5
(O — Ep)?
X72“5 = Z E
k=1 k

of the y2-goodness-of-fit test using K = 5 intervals and n observations converges to a y?-
distribution with K —1 = 5 — 1 = 4 degrees of freedom, as n — co. As we have n = 20
observations in our data, we can calculate E}, as

E, =20-PlY €] = 20-0.2 ~ 4,

for all k =1,...,5. The values of the actual numbers of observations Oy and the expected
numbers of observations E}, in the five intervals k = 1,...,5 as well as their squared differences
(Or, — Ey)? are summarized in Table 1.

k 1 2 3 4 5

Oy, 4 0 8 6 2

Ey, 4 4 4 4 4
(Or—Ex)?2 |0 16 16 4 4

Table 1: Actual and expected numbers of observations with squared differences.

With the numbers in Table 1, the test statistic of the y2-goodness-of-fit test using 5 intervals
in the case of our n = 20 observations is given by

5
On—Ep)? 0 16 16 4 4

x2S O = B)7 0 16 16 4 4,
20,5 kz_l Ej, iTT T

Let a = 5%. Then, the (1 — a)-quantile of the y?-distribution with 4 degrees of freedom is

given by approximately 9.49. Since this is smaller than X 2207 5, we can reject the null hypothesis

of having a Pareto distribution with threshold 8 = 200 and tail index o = 1.25 as claim size

distribution at significance level of 5%.
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(b) We assume that we have n i.i.d. observations Y7, ...,Y, from the null hypothesis distribution
and that we work with K = 2 disjoint intervals I; and Is. We define

p = ]P)[Yl S Il]
and
Xi = Lvienys

for all ¢ = 1,...,n. This implies that X1,..., X, L Bernoulli(p). Thus, we have

P EEX]=p and o E /Var(Xy) = Vo1 - p).

Moreover, we can write

01:2Xi and ngnfOlzn—ZXi
=1 1=1
as well as

n

n—ZXZ-] =n—np = n(l—p).

E, = ElZXi] =np and E,=E
i=1 =1

Therefore, we get

2
X2, =% (Or — Ex)* _ (01 —np)?® n [n =01 —n(1 - p))?
c e B np n(1—p)

= (01— |+ | = (O

Let Z ~ N(0,1) and x? follow a y?-square distribution with one degree of freedom. According
to the central limit theorem, see equation (1.2) of the lecture notes (version of March 20,

2019), we have
D Xi —np

Vno
(d

As 22 @ X3, see Exercise 1.4, we can conclude that

np(l —p)

= Z, asn— .

d
XZ’Z — 72 @ X3, asmn — oo.

Solution 6.2 Log-Normal Distribution and Deductible

(a) Let X ~ N (p,0?). Then, the moment generating function Mx of X is given by

Mx(r) = Efesp{rX}] = exp {ru+ o b

for all » € R, see Exercise 1.3. Since Y7 has a log-normal distribution with mean parameter p
and variance parameter o2, we have

Y, @ exp{X}.
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Hence, the expectation, the variance and the coefficient of variation of Y7 can be calculated as

EM] = E[exp{X}] = E[exp{1-X}] = Mx(1) = exp {u+ ”2}

Var(¥i) = E[Y7] — EW]° = E[exp{2X}] - Mx (1) = Mx(2) - Mx(1)®

402 o? 9 9
exp 2,u+7 — exp 2u+27 = eXp{Qquo }(exp{a }71) and

Veo(¥7) Var(Y1)  exp{u+0°/2} \/exp{o?} —1 _ Jep (o — 1.

E[Y3] exp{p+0?%/2}

(b) From part (a) we know that

o = /log[Vco(Y1)2 + 1] and

0.2

p = logE[Yq] — =

Since E[Y;] = 3’000 and Veo(Y7) = 4, we get

o = 4/log(42 +1) = 1.68 and
1.68)
1~ log 3’000 — ( 3 ) ~ 6.59.

(i) The claim frequency A is given by A = E[N]/v. With the introduction of the deductible
d = 500, the number of claims changes to

N
Noew — Zl{Yl>d}
1=1

Using the independence of N and Y7,Ys, ..., we get

E[N""] = E [Z 1{Yi>d}] = E[N]E[1{y,>0)] = E[N]P[Y; > d].

i=1

Let ® denote the distribution function of a standard Gaussian distribution. Since log Y;
has a Gaussian distribution with mean p and variance o2, we have

logY1 — i < logd—,u] C1-& (logd—,u>

o - o o

PY1 >d =1-P[Y; <d] = 1—]P’{
Hence, the new claim frequency A"V is given by
o

AV — E[N"V] /v = E[N]P[Y; > d]/v = AP[Y; >d] = A {1 .y (k’gd_”ﬂ .

Inserting the values of d, u and o, we get

log 500 — 6.59
HEW: ~ 1-( =——— ~ 0.59 - \.
o a oo (B0 gy

Note that the introduction of this deductible reduces the administrative burden a lot,
because we expect that 41% of the claims disappear.
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(if) With the introduction of the deductible d = 500, the claim sizes change to
YO = Y, —d|Y; > d.
Thus, the new expected claim size is given by
E[YP*] = By, — d)Y; > d] = e(d),

where e(d) is the mean excess function of Y7 above d. According to page 67 of the lecture
notes (version of March 20, 2019), e(d) is given by

1-® (logdfufo'g)
1-® (logdf,u)

Inserting the values of d, u, o and E[Y7], we get

e(d) = E[¥] —d

log 500—6.59—1.68°
1.68

1-®
E[Y] ~ 3°000 ( ) — 500 ~ 4456 ~ 1.49-E[Y].

_ log 500—6.59
1 o ( 1.68 )

(iii) According to Proposition 2.2 of the lecture notes (version of March 20, 2019), the
expected total claim amount E[S] is given by

E[S] = E[N]E[Y3].
With the introduction of the deductible d = 500, the total claim amount S changes to
S"eW which can be written as

Nmew

gnew Z Y—Z_new'

i=1
Hence, the expected total claim amount changes to
E[S™V] = E[N"VIE[Y*Y] = E[N]P[Y; > dle(d) ~ 0.59-E[N]-1.49 - E[Y]]
~ 0.87-E[5].
In particular, the insurance company can grant a discount of roughly 13% on the pure

risk premium. Note that also the administrative expenses on claims handling will reduce
substantially because we only have 59% of the original claims, see the result in (i).

Solution 6.3 Kolmogorov-Smirnov Test

The distribution function Gy of a Weibull distribution with shape parameter 7 = % and scale
parameter ¢ = 1 is given by

Gulo) = 1 - exp { 7).

for all y > 0. Since G is continuous, we are indeed allowed to apply a Kolmogorov-Smirnov test.
If z = (—logu)? for some u € (0, 1), we have

Go(z) = 1—exp{— [(—logu)ﬂl/z} =1—exp{logu} = 1—u.

Hence, if we evaluate G at our data points z1,..., x5, we get
3 6 30
Go(z1) = 10 Go(r2) = 10 Go(z3) = 10’ Go(za) = 10 Go(zs) = 0
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We write én for the empirical distribution function of a sample with n data points. The Kolmogorov-
Smirnov test statistic D,, is then defined as

~

D, = sup |G (y) — Go(y)|,
yeR

and /nD,, converges to the Kolmogorov distribution K, as n — oo. The empirical distribution
function G5 of the sample x1,..., x5 is given by

0 ify <y,

1/5  ifxy <y < o,
P~ B 2/5 ifx2§y<x3,
Gs(y) = 3/6 ifxz <y <y,

4/5 ifzy <y < zs,
1 ify > xs.

Since Gy is continuous and strictly increasing with range [0,1) and @5 is piecewise constant and
attains both the values 0 and 1, it is sufficient to consider the discontinuities of G5 to determine
the Kolmogorov-Smirnov test statistic Ds for our n = 5 data points. We define

Jls=) = lmf(r),

for all s € R, where the function f stands for Go and (/55. Since Gy is continuous, we have
Go(s—) = Gy(s) for all s € R. The values of Gy and G5 and their differences (in absolute value)
are summarized in Table 2.

Ly Lj— €T1— Ea! T2— €2 r3— €3 Ty— Ty xT5— T5
G5(-) 0 8/40 8/40 16/40 16/40 24/40 24/40 32/40 32/40 1
Go(") 2/40 2/40 3/40 3/40 5/40 5/40 6/40  6/40 30/40 30/40

|G5(-)—G0(-)| 2/40 6/40 5/40 13/40 11/40 19/40 18/40 26/40 2/40 10/40

Table 2: Values of Gy and G5 and their differences (in absolute value).

From Table 2 we see for the Kolmogorov-Smirnov test statistic D5 that

Ds = sup |Gs(y) — Go(y)| = 26/40 = 0.65.
yeR

Let ¢ = 5%. By writing K (1 — ¢) for the (1 — ¢)-quantile of the Kolmogorov distribution, we
have K (1 — q) = 1.36, see page 81 of the lecture notes (version of March 20, 2019). Since

K<(1 -
K70 -9) L 061 < 065 = Ds,
V5
we can reject the null hypothesis (at significance level of 5%) that the data x1,...,zs comes from a

Weibull distribution with shape parameter 7 = % and scale parameter ¢ = 1.

Solution 6.4 Akaike Information Criterion and Bayesian Information Criterion

(a) By definition, the MLEs (ﬁMLE,EMLE) maximize the log-likelihood function ¢y . In particular,
we have
by (BB EMEE) >ty (v,0),

for all (v,¢) € Ry x Ry.
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If we write d™™ and d™MTF for the number of estimated parameters in the method of moments
model and in the MLE model, respectively, we have dMM = ¢MLE — 2 The AIC value AICMM
of the method of moments model and the AIC value AICMY of the MLE model are then
given by

AICMM = —20y (MM EMM) 4 2¢MM = —2.1264.013 +2-2 = —2'524.026 and
AICMEE = oy (RMEE GMLE) 4 ogMLE — _2.17264.171 + 22 = —2'524.342.

According to the AIC, the model with the smallest AIC value should be preferred. Since
AICMM > ATCMEE | we choose the MLE fit.

If we write d%*™ and d®*P for the number of estimated parameters in the gamma model and in
the exponential model, respectively, we have d®*™ = 2 and d**P = 1. The AIC value AIC®*™
of the gamma model and the AIC value AIC®® of the exponential model are then given by

AICE™ = —208™ (FMEE GMEE) 4 ogeem — —2.1264.171 +2-2 = —2'524.342 and
AICTP = 209 (BMF) + 24P = —2.1'264.169 +2- 1 = —2'526.338.

Since AIC®™ > AIC**P we choose the exponential model.
The BIC value BIC®™ of the gamma model and the BIC value BIC**® of the exponential
model are given by
BICE™™ = —208™ (FMEE GMEE) 4 g8 . logn = —2-17264.171 + 2 -1og 1’000 ~ —2'514.53
and

BIC™® = —209® (M) 4+ d™P - logn = —2-1'264.169 + log 1000 ~ —2'521.43.
According to the BIC, the model with the smallest BIC value should be preferred. Since

BIC®™ > BIC*P | we choose the exponential model.

Note that the gamma model gives the better in-sample fit than the exponential model. But
if we adjust this in-sample fit by the number of parameters used, we conclude that the
exponential model probably has the better out-of-sample performance (better predictive
power).
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