Mathematical Finance

Exercise sheet 13

Exercise 13.1 Consider a complete financial market with time interval [0,T], riskless asset $S_t^0 = e^{rt}$ for some $r \in \mathbb{R}$ and a *d*-dimensional risky asset S, with their natural filtration and unique separating measure Q.

- (a) Find the arbitrage-free price at time t of a bounded European (\mathcal{F}_T -measurable) payoff H, denoted by $\pi_t^E(H)$.
- (b) Let $(U_t)_{t \in [0,T]}$ be a non-negative bounded adapted process. Find the arbitrage-free price at time t of the American option with payoff U, denoted by $\pi_t^A(U)$.
- (c) Give an alternative characterisation of $\pi_t^A(U)$ as a Snell envelope.
- (d) In terms of an European option, give a necessary and sufficient condition for a given stopping time τ to be an optimal exercise time of the American option.
- (e) Suppose that $r \ge 0$ and that the riskless asset follows a Black-Scholes model. Show that the American call option has the same value as the European call option.
- (f) Suppose that U is continuous and uniformly bounded. Define the stopping time $\tau = \inf\{t \ge 0 : \pi_t^A(U) = U_t\}$. Show that $\tau \le T$, that τ is an optimal exercise time for the American option and that the stopped process $(\pi^A/S^0)^{\tau}$ is a Q-martingale.
- (g) Suppose r = 0. Let M be a non-negative local martingale such that $M_0 = 1$ and $M_t = 0$ for all $t \ge 1$, and that M^t is a martingale for each $t \in [0, 1)$. Consider the process $U_t = M_t + t$ on [0, 1] (note that U is not bounded in this case). Show that $V_t = M_t + 1$ on [0, 1) and $V_1 = U_1 = 1$. Deduce that $\tau = 1$ is not optimal.

Exercise 13.2 Consider a Bachelier model with riskless asset of constant price 1 and a onedimensional risky asset of price

$$S_t = S_0 + \sigma B_t,$$

for some constant S_0 .

Consider the payoff process

$$U_t = g\left(S_t, Y_t\right),$$

for g a non-negative bounded measurable function of the asset price S and its modified running average $Y_t = \frac{1}{t+1} \left(Y_0 + \int_0^t S_u du \right)$ (for some constant Y_0).

(a) Argue why the value of the American option associated with U can be expressed as

$$\pi_t^A(U) = f(t, S_t, Y_t)$$

for some function f.

- (b) Assuming that f is smooth enough, write a free boundary partial differential equation for f.
- (c) Suppose that g is smooth. Find a condition that characterises an optimal exercise time $\tau < T$ for U, in terms of the derivatives of g.

(d) Let $g(S_t, Y_t) = (S_t - Y_t)^2$. Compute (heuristically) the optimal exercise time τ .

Exercise 13.3 Consider a market model where the n-dimensional stock price process X satisfies

$$d\log X_i(t) = \gamma_i(t)dt + \sum_{\nu=1}^n \sigma_{i\nu}dW_{\nu}(t),$$

where the γ_i and $\sigma_{i\nu}$ are progressively measurable processes satisfying appropriate integrability conditions.

- (a) Define the market portfolio μ and what it means for a portfolio π to be functionally generated by a function S.
- (b) Write down the formula for the portfolio π generated by S, a positive C^2 function defined on a neighbourhood U of the simplex Δ^n such that for each i, $x_i D_i \log S(x)$ is bounded on Δ^n .
- (c) Compute the portfolios generated by the following functions:
 - S(x) = 1.
 - $S(x) = w_1 x_1 + \ldots + w_n x_n$, where the w_i are non-negative and not all equal to 0.
 - $S(x) = x_1^{p_1} \dots x_n^{p_n}$, where the p_i are constants adding up to 1.
 - $S(x) = (w_1 x_1^p + \ldots + w_n x_n^p)^{1/p}$, where the w_i are non-negative and not all equal to 0 and p > 0.