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Exercise 4.1

(a) Let W be a Brownian motion and τ an independent random variable taking non-negative
real values. Consider the process

X = E(W )τ .
Show that there exists a suitable choice of τ such that X is a uniformly integrable martingale
but X∗∞ is not integrable.

(b) Let T ∈ (0,∞) be the time horizon, L∞ denote the class of all bounded martingales and H∞
the class of martingales M such that [M ]T is bounded. Show that L∞ 6⊆ H∞ and H∞ 6⊆ L∞.

(c) For a martingale M on [0, T ], denote

‖M‖BMO2 := sup
t
‖E[|MT −Mt−|2 | Ft]1/2‖∞.

Let BMO be the set of martingales such that ‖M‖BMO2 <∞. Show that L∞, H∞ ⊆ BMO.

(d) Let H1 denote the class of martingales with integrable maximum. Show that for M ∈ H1

and N ∈ BMO, and assuming that M and N are continuous,

E

[∫ T

0
|d〈M,N〉s|

]
≤ c‖M‖H1‖N‖BMO2 .

Exercise 4.2 Let B be a Brownian motion on R (starting at 0). For x ∈ [−1, 1], we consider
Bxt = x+Bt, a Brownian motion “started at x”. Let τx := inf{t > 0 : |Bxt | ≥ 1} be the first time
that it exits [−1, 1].

(a) Let g be a continuous function on [−1, 1]. Show that the function u : [−1, 1]→ R defined by

u(x) = E

[∫ τx

0
g(Bxs )ds

]
is well-defined and continuous.
Hint: Start by showing that τx is integrable by considering the martingale (Bx)2

t − t.

(b) Suppose that v is a bounded function on [−1, 1] such that v(−1) = v(1) = 0, and furthermore
the process Mx defined by

Mx
t = v(Bxt∧τx) +

∫ t∧τx

0
g(Bxs )ds

is a local martingale for each x.
Prove that u = v.

(c) Suppose that v is a bounded function on [−1, 1] such that v(−1) = v(1) = 0 and it satisfies
the second-order differential equation

1
2v
′′(x) = −g(x). (1)

Show that v = u.
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(d) Replacing g by the Dirac delta mass δy at some point y ∈ R, formally compute the solution vy
to (1). The function vy(x) =: G(x, y) is called the Green’s function. Can you find a solution
to (1) for more general g, in terms of G?

Exercise 4.3

(a) Let σ be a continuous positive function on R, satisfying the linear growth condition:

|σ(x)| ≤ K(1 + |x|)

for some K > 0. Suppose that we have a Brownian motion B and a family of processes Xx

(for x ∈ R) such that, for each x ∈ R, the following stochastic differential equation is satisfied
for all t ≥ 0:

Xx
t = x+

∫ t

0
σ(Xx

s )dBs.

Prove that for each time T > 0 there is a constant c (depending only on T , K and p but not
on x) such that

E[((Xx
T )∗)p] ≤ c(1 + |x|p).

(b) Construct a pair (X,B), where B is a Brownian motion, such that the following stochastic
differential equation is satisfied:

Xt =
∫ t

0
sgn(Xs)dBs,

where sgn(x) = −1x≤0 + 1x>0.

Exercise 4.4 (Python) Simulate a random walk (Mn)n∈N up to time 1000, starting from 0 and
with the same probability 1

2 of jumping up or down (by 1) at each step.
Quoting from [1], give explicit predictable integrands g and h and constants cp, Cp > 0 such

that the inequalities

(h •M)n + cp[M,M ]
3
2
n ≤ (|M |∗n)3 ≤ Cp[M,M ]

3
2
n + (g •M)n

hold.
Compute the values taken by these processes along your simulated random walk, and plot them

together with the process M3
n.
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