Mathematical Finance

Exercise sheet 9

Exercise 9.1

(a) Let $\mathcal{C} \subseteq L^0$ be non-empty, closed, convex and bounded. Suppose that $J : L^0 \to \mathbb{R}$ is a continuous strictly concave function such that

$$\sup_{g\in\mathcal{C}}J(g)<\infty,$$

and that $J \not\equiv -\infty$ on \mathcal{C} . Show that J has a unique maximiser \hat{g} .

(b) Let $(\mathcal{C}_n)_{n\in\mathbb{Z}}$ be an increasing sequence of closed, convex, bounded subsets of L^0 , i.e. such that $\mathcal{C}_n \subseteq \mathcal{C}_m$ for $n \leq m$. Show that J has a unique maximiser $\hat{g}_{-\infty}$ on

$$\mathcal{C}_{-\infty} := \bigcap_{n \in \mathbb{Z}} \mathcal{C}_n$$

if $\mathcal{C}_{-\infty}$ is non-empty and $J \not\equiv -\infty$ on $\mathcal{C}_{-\infty}$, and moreover there exists a sequence (\tilde{h}_n) of forward convex combinations of $(\hat{g}_{-n})_{n\geq 1}$ such that $\tilde{h}_n \to \hat{g}_{-\infty}$ as $n \to \infty$.

(c) Suppose that $\bigcup_{n \in \mathbb{Z}} C_n$ is bounded in probability, and that f is bounded above in this set. Show that J has a unique maximiser \hat{g}_{∞} on

$$\mathcal{C}_{\infty} = \overline{\bigcup_{n \in \mathbb{Z}} \mathcal{C}_n}^{L^0},$$

and moreover $\hat{g}_n \to \hat{g}_\infty$ as $n \to \infty$.

(d) Suppose that J is uniformly strictly concave, in the sense that there exists a continuous strictly increasing function $\rho : \mathbb{R}_+ \to \mathbb{R}_+$ with $\rho(0) = 0$ and such that for $f_1, f_2 \in L^0$,

$$J\left(\frac{f_1+f_2}{2}\right) - \frac{J(f_1) + J(f_2)}{2} \ge \rho(d(f_1, f_2))$$

Show that in (b) and (c), we already have that $\hat{g}_{-n} \to g_{-\infty}$ and $\hat{g}_n \to g_{\infty}$, respectively.

Exercise 9.2

(a) Consider the Bachelier model

$$S_t = S_0 + \sigma B_t$$

in its natural filtration on the interval [0, T]. Prove the martingale representation theorem for bounded martingales, using the fact that the set of equivalent separating measures is a singleton.

- (b) Consider a continuous trajectory model S for a d-dimensional discounted price process in its natural filtration. Assume that there is only one equivalent separating measure. Prove that martingale representation holds true for bounded martingales.
- (c) Consider finite filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ supporting a model S for a d-dimensional discounted price process. Assume that there exists more than one equivalent separating measure. Prove that there is at least one bounded claim g such that either g or -g cannot be replicated.

Exercise 9.3 Consider a general model, with [0, 1] as the time interval, a riskless asset of constant price 1, and some *d*-dimensional semimartingale S representing the prices of the risky assets.

Define

$$G = \{ (\vartheta \bullet S)_T, \vartheta \in \Theta_{adm} \} \subseteq L^0$$

and

$$C = (G - L^0_{\ge 0}) \cap L^\infty \subseteq L^\infty.$$

(a) Show that the following notions of no arbitrage are equivalent:

$$G \cap L^0_{\ge 0} = \{0\}$$

and

$$C \cap L^{\infty}_{\geq 0} = \{0\}.$$

(b) Prove that C is weak-*-closed if and only for any bounded sequence (f_n) in C converging almost surely to f_0 , it holds that $f_0 \in C$.