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Exercise 1.1 Let (M,,),en be a martingale such that My = 0 and
|M,, — M,,_1] <a, P-as.
for each n and a sequence (a,,) of non-negative constants, with Y .o, a? = A% < cc.

(a) Prove that M is bounded in L?. Deduce that M, — M., almost surely and in L?, for some
My, in L2

(b) Show that

2
P My, > < -
(=) <o ()
for any ¢ > 0.

Hint: Try applying Doob’s maximal inequality to (e*)

inequality cosh(z) < e*’/2 (for x € R).

, for some A > 0. You may use the

Solution 1.1

(a) Recall the simple fact that, since M is a martingale,

E[(Mp41 — M,)* | Fo] = EIM2., — M2 | Fo).
From this and My = 0 it follows that

using the assumptions. Therefore M is bounded in L2. It is known that boundedness in L?
implies in particular uniform integrability, so by the martingale convergence theorem there is
a limit M,, — M, almost surely and in L!. Boundedness of M in L? implies furthermore
that M is in L? and that the convergence also happens in L2.

(b) Let A > 0 be fixed and let

Z,, = eMn,

Then we have the following (note that, since Z is non-negative, we don’t need to assume
integrability):

EZy | Faoi] = Zn Bl M=) | 7).

To estimate this term, note that |M,, — M, _1| < a,, by assumption. On [—a,, a,] we have
(by convexity) the inequality
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an — me—/\an + an + ‘Te)\an > eAz
2a, 2a, -

(this simply follows from convexity). Thus,

n_EMn_Mnf n— — n EMn_Mnf n—
Bl Fact) < Zoy (221 1 Pzl j-sa | G+ HF ] )

2ay 2a.,

1 . 1 4,
= 4Ln-1 <26 A"+§8)\ ">

= Zp—1 cosh(Aay,)

AZa2 /2
S Zn—le an/ )

using that M is a martingale and the given inequality.

Iterating, we obtain

E[Z,] < exp </\2 Zn:a?/2> < exp(\?A?/2).

i=1

In particular, this proves that Z,, is integrable, and from Jensen’s inequality it follows easily
that Z is a submartingale (since M is a martingale).

Next, we apply Doob’s maximal inequality to Z to obtain the following (let M} = maxo<p<, Mk,
ete):
P(M; >c¢) = P(Z; > )
< e *E[Z,]
< e—Ac—&-)\?AZ/Q.

At this point we haven’t specified what value A > 0 will take, and so we are free to choose a
convenient one. We choose A so as to minimise the exponent, meaning that A = - and so

2
P(M;; > c¢) < exp (—;AQ> :

which is precisely the bound we want. To replace M;* with M7 we simply use the monotone
convergence theorem.
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Exercise 1.2 Let p be a probability measure on (0, +00). Consider (on some probability space)
independent N, Y7,Y5,Ys,... where each Y; has distribution y and N = (N;).ep,1] is a Poisson
process on [0, 1] of rate A > 0. Consider the compound Poisson process X on [0, 1] given by

Ny
X, = ZY
=1

(a) Find a necessary and sufficient condition for X to be a submartingale with respect to its
natural filtration.

(b) Show that under that condition, X is a submartingale of class (D). Find a decomposition

Xi=M;+ Ay Vtelo,1],

where M is a martingale and A is an increasing predictable process, both with cadlag
trajectories.

(c¢) Show through direct calculations that X is a good integrator.

Solution 1.2

(a) Since the Y; are non-negative, the following computations hold for ¢ € [0, 1]:

.
EX)]=E |} Y
=1
=F|FE

N¢
PR AR ]

:Nt i=1
=k ZE[Yz | Nt]]
Li=1

=F Nt/ xdu(x)]
L (0,00)

=\t / xdp(x),
(0,00)

using independence and the distribution of the Y;.

Therefore, if X is going to be a submartingale then f(o 00) xdp(z) =: po < oo is required. This
is in fact sufficient: the calculations above show that X is integrable. It is obviously adapted
to its natural filtration, and since it is (almost surely) increasing it must be a submartingale.

(b) Note that since X is increasing, for any stopping time 7 (taking values on [0, 1]), X, < Xj.
Since X is integrable (and X, is non-negative), this means that { X : 7 is a stopping time on [0,1]}
is uniformly integrable. Therefore (Xt);c[o,1] is of class (D).

We find the required decomposition:

Xt = (Xt — )\,LLOt) + )\Mot

Clearly this is a valid decomposition, and A; = Aot is increasing, predictable (even deter-
ministic) and cadlag. My = Xy — Aot is clearly cadlag since X is, and we want to show that
it is a martingale.
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Since X is adapted and integrable, so is M. To show that it is a martingale, note that

Ny
> Y| F
i=Ng+1

=Ms— Aot —s)+ E |E

E[M,|F,)=M,—\t—s)+E

Ny
> Y o(Nt,m] | 4

i=N,+1

—
=M;— Mot —s)+ E Z EY; | o(Ny, Fs)l | ]-'S]
Li=N,+1

- N,
=M, —Auo(t—8)+ E Z M0|fs]
Li=N,+1

= M, — Mpo(t — 5) + E [po(Ny — Ny) | Fs)
:Msv

as we wanted (using again independence, the distribution of the Y; as well as independence of
increments of the Poisson process).

c) Given a simple integrand H = Holoy + > o H;l(,, we have that
{ } =1 ( (2]

Tit1]?

|(H.X)t| = ZHi(XTiJrl/\t - XTi/\t)
i=1

n
S Z |H’L-HX7'1‘+1/\t - XTi/\t|
=1

< Z |Hl|(XT1+1 - Xﬂ)
=1

< Xy sup |[Hy
t€[0,1]

Now, if we take simple integrands H* converging to 0 in ucp topology, then we have that for
e >0,

P(sup |(H" @ X);| >¢) < P( sup |HF|X; > ¢)
te[0,1] te[0,1]
£

< P| sup |HF|l>
(te[(],l] ! M

)+P(X1>€M)

for any M > 0. By choosing M large enough we can make the second term small, and then
by choosing k large enough we can make the first term small as well (using ucp convergence
of H* to 0). This shows convergence of H* @ X to 0 in the ucp topology.
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Exercise 1.3 Let (2, F,F, P) be a stochastic basis satisfying the usual conditions. Let M be a
local martingale and X an adapted cadlag process. Prove the following statements:

(a)
(b)

()
(d)
()

Hint:

M is a uniformly integrable martingale if and only if it is of class (D).

Let X have terminal value Xo. Then X is a uniformly integrable martingale if and only if
for all stopping times 7, the variable X, is integrable and E[X,] = E[X].

Let X be predictable and 7 a stopping time. Then X1, is F,_-measurable.
Let 7 be a predictable finite stopping time. Then M,_ = E[M, | F_].

Let M be predictable. Then M is continuous.

For (d), you may use the fact that 7 is a predictable stopping time if and only if there exists

an announcing sequence (1,)22; for 7, defined as an increasing sequence of stopping times such
that 7, 77 and 7, < 7 P-a.s. on 7 > 0.

Solution 1.3

(a)

If M is a uniformly integrable martingale, by the martingale convergence theorem there
exists a limit My, € L'(F) such that M; = E[M,, | F] for all ¢ > 0. Indeed, we obtain
M, = E[M | F,] for all stopping times 7, by the optional stopping theorem. Then, the
family {M, = E[M, | F-], T a finite stopping time} is uniformly integrable, as a family of
conditional expectations of an integrable random variable.
Conversely, let M be of class (D). Find a localising sequence (7,,) for M, then for any s < ¢
we have

E[Mt/\Tn | f@] = Ms/\‘r—n-

Note that Mia,, — M; and Msa,, — M, P-almost surely as n — oo. Since (Miar, )22 is
uniformly integrable, the convergence is also in L' (Vitali convergence theorem). Thus, we
obtain E[M; | Fs] = M,. Since M is integrable and adapted, it is a uniformly integrable
martingale.

If X is a uniformly integrable martingale, then X, is integrable and E[X,] = E[X,] for any
stopping time 7, by the optional stopping theorem (this also holds when 7 = 00).

Suppose now that X, is integrable and E[X .| = E[X,] for all stopping times 7. By assumption,
X; is in particular integrable for each t € [0, 00]. To show that X is a uniformly integrable
martingale, it suffices to show that X; = E[X, | F¢], for each ¢t > 0.

By definition of conditional expectation, it is enough to show that F[X;14] = F[X14] for
any event A € F;. By taking 7 = t14 + ool 4¢, the equality holds from the assumption.

We use the monotone class theorem. Let
H:={X:Qx[0,00) = R |Vr a stopping time, X, 1. is F,_-measurable}.

It is obvious that H is a vector space, and likewise for any increasing sequence X" 1 X of
non-negative X™ € ‘H, we have that

X-,—]].-,—<Oo = lim X;r_l]].7—<oo
n—oo
is F,_-measurable.
Finally, we show that H € H, for any simple predictable process H of the form

H == ]]']S,t]]]'A
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or
H=114

where A € Fs and A € Fy, respectively. This is enough, since processes of this form generate
the predictable o-algebra P, so that H contains all predictable processes. We consider the
first case, as the second is similar. Note that

H‘r = ]]-s<'r§t]]-A = ]]-{s<-r}r1A]]-'r§t'

By definition of F,_, we have that {s < 7} N A € F,_ for A € F. Since {7 <t} = {7 >
t}¢ € Fr— we conclude that H, is F,_, as we wanted.

(d) Assume first that M is a uniformly integrable martingale. From the hint, we may take an
announcing sequence (7,,) for 7. Since M is a uniformly integrable martingale, it holds by the
optional stopping theorem that

M, = E[M.|F,.]

n

for each n. Note that one can see (M, )52 as a discrete uniformly integrable martingale
with respect to the filtration G, := F, . The martingale convergence theorem gives that

M;, —n

in L! for some integrable random variable 1. Moreover, we have that 71 is G..-measurable,
where Goo = 0 (U,—, Gn), and indeed n = E[M, | G]. So we just need to show that
Goo = Fr_, which is straightforward to check. We obtain

E[M, | Fr—]=n= lim M, = M,_.
n—oo
Now, we consider the general case. Let M be a local martingale and (7},) a localising sequence.
We have that

E[MT | ]:Tf]]lTSTn

EM:1,<p, | Fr-]
E[MT/\TTL :l]-'rST71 ‘ ]:'rf]
= EW[J\IT/\Tn | fT—}]]-TSTn

=M:_pr,1:<m,
= M.,-, ]lTST,L ’

using that {7 < T,,} € F,_ and that we proved the result for uniformly integrable martingales.
Therefore, E[M, | Fr_] = M,;_ on {r <T,}. Since | J,— ;{7 <T,} = Q up to a null set, we
have that E[M, | F,_] = M,_ P-as..

(e) If M is a predictable local martingale, we can apply both results (c) and (d). Since M
is predictable, for any finite stopping time we have that M., is F,_-measurable, so that
E[M; | Fr_] = M, P-as. by (c). We also have that M,_ = E[M, | F,_] for any predictable
finite stopping time by (d), so that M, = M,_ P-a.s. for any predictable finite stopping time
7. By the predictable section theorem it follows that M and M_ are indistinguishable, and
so M is almost surely continuous (since we assume that it is cadlag).
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Exercise 1.4 Let A be an increasing locally integrable process with Ag = 0. Show that, for an
increasing predictable process AP with A = 0, the following conditions are equivalent:

1. A — AP is a local martingale;
2. E[AP] = E[A,] for all stopping times 7;
3. E[(H e AP)| = E[(H e A)] for all nonnegative simple predictable processes H.

Show that there exists a unique such process AP, known as the dual predictable projection or
compensator of A.

Hint: Use the Doob-Meyer decomposition theorem to prove uniqueness and existence.

Solution 1.4 3. = 2. is immediate by setting H = 1jg ,[.
2. = 1.: Let (7,) be a localising sequence for A, i.e. such that E[A;, | = E[A? ]| < oco. It follows
from 3b) that (A — AP)™ is a uniformly integrable martingale, and so A — AP is a local martingale.
1. = 3.: It is enough to check this for H = H; Lis.q for s < t and H, a Fs-measurable random
variable. We need to check that

E[HS(A%:) - Al;)] = E[Hs(At - As)]

Let (7,,) be a localising sequence for A — AP, and we may assume that A™ (AP)™ are integrable,
ie. E[A; ], E[A? | < oco. Since (A — AP)™ is a uniformly integrable martingale, we obtain that

E[Hs (Alt)/\m - Ag/\T"H = E[Hs (AtATn - As/\m)]

(by taking a conditional expectation). Since A¢nr, — Agnr, and A}, — A¥,_ are increasing in n,
and Hs > 0, we obtain the result by the monotone convergence theorem.

Finally, we show that a unique such AP exists. Once again, let (7,,) be a localising sequence
such that E[A,, ] < co. Since A is increasing, it is clear that A™ is a submartingale of class (D) for
each n, and therefore it has a unique Doob-Meyer decomposition

A™ = M _|_Bn7

where M™ is a local martingale and B™ is an increasing predictable process, both started at 0.
We note that the (M™) and (B™) are consistent, in the sense that (M™)™-1 = M"~! and
(B™)™-1 = B"~! for each n. Indeed, we have that

ATn—1 = Mn—l +Bn—1

and
ATnil — (ATn)Tn71 — (M’I‘L)Tn71 + (Bn)Tnfl’

so that the uniqueness of the decomposition shows the consistency.

Next, we can define M = M™ and B = B™ on [0, ,[: since 7, T 0o, this defines M and B up to
a null set (the consistency of (M™) and B™) ensures that this definition make sense). We claim that
B = AP is the process we want. It is clear from the definition that B is increasing and predictable
since the B™ are, and A — B = M is a local martingale since 7, is a localising sequence. Therefore,
1. holds, as we wanted.

To see that B is the unique such process, let B be another candidate. We can find a common
localising sequence (7,) for A — B and A — B. Then,

A™ = (A= B)™ + B™ = (A— B)™ + B™

are two Doob-Meyer decompositions for A™, so that B™ = B™ for each n, which implies that
B=B.
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