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Exercise 1.1 Let (Mn)n∈N be a martingale such that M0 = 0 and

|Mn −Mn−1| ≤ an P -a.s.

for each n and a sequence (an) of non-negative constants, with
∑∞
i=1 a

2
i = A2 <∞.

(a) Prove that M is bounded in L2. Deduce that Mn →M∞ almost surely and in L2, for some
M∞ in L2.

(b) Show that

P

(
sup
k≥0

Mk ≥ c
)
≤ exp

(
− c2

2A2

)
,

for any c > 0.
Hint: Try applying Doob’s maximal inequality to (eλMn), for some λ > 0. You may use the
inequality cosh(x) ≤ ex2/2 (for x ∈ R).

Solution 1.1

(a) Recall the simple fact that, since M is a martingale,

E[(Mn+1 −Mn)2 | Fn] = E[M2
n+1 −M2

n | Fn].

From this and M0 = 0 it follows that

E[M2
n] =

n∑
i=1

E[(Mn −Mn−1)2]

≤
n∑
i=1

a2
i ≤ A2 <∞

using the assumptions. Therefore M is bounded in L2. It is known that boundedness in L2

implies in particular uniform integrability, so by the martingale convergence theorem there is
a limit Mn → M∞ almost surely and in L1. Boundedness of M in L2 implies furthermore
that M∞ is in L2 and that the convergence also happens in L2.

(b) Let λ > 0 be fixed and let

Zn = eλMn .

Then we have the following (note that, since Z is non-negative, we don’t need to assume
integrability):

E[Zn | Fn−1] = Zn−1E[eλ(Mn−Mn−1) | Fn−1].

To estimate this term, note that |Mn −Mn−1| ≤ an by assumption. On [−an, an] we have
(by convexity) the inequality
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an − x
2an

e−λan + an + x

2an
eλan ≥ eλx

(this simply follows from convexity). Thus,

E[Zn | Fn−1] ≤ Zn−1

(
an − E[Mn −Mn−1 | Fn−1]

2an
e−λan + an + E[Mn −Mn−1 | Fn−1]

2an
eλan

)
= Zn−1

(
1
2e
−λan + 1

2e
λan

)
= Zn−1 cosh(λan)

≤ Zn−1e
λ2a2

n/2,

using that M is a martingale and the given inequality.
Iterating, we obtain

E[Zn] ≤ exp
(
λ2

n∑
i=1

a2
i /2
)
≤ exp(λ2A2/2).

In particular, this proves that Zn is integrable, and from Jensen’s inequality it follows easily
that Z is a submartingale (since M is a martingale).
Next, we apply Doob’s maximal inequality to Z to obtain the following (letM∗n = max0≤k≤nMk,
etc):

P (M∗n ≥ c) = P (Z∗n ≥ eλc)
≤ e−λcE[Zn]

≤ e−λc+λ
2A2/2.

At this point we haven’t specified what value λ > 0 will take, and so we are free to choose a
convenient one. We choose λ so as to minimise the exponent, meaning that λ = c

A2 and so

P (M∗n ≥ c) ≤ exp
(
− c2

2A2

)
,

which is precisely the bound we want. To replace M∗n with M∗∞ we simply use the monotone
convergence theorem.
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Exercise 1.2 Let µ be a probability measure on (0,+∞). Consider (on some probability space)
independent N,Y1, Y2, Y3, ... where each Yi has distribution µ and N = (Nt)t∈[0,1] is a Poisson
process on [0, 1] of rate λ > 0. Consider the compound Poisson process X on [0, 1] given by

Xt =
Nt∑
i=1

Yi.

(a) Find a necessary and sufficient condition for X to be a submartingale with respect to its
natural filtration.

(b) Show that under that condition, X is a submartingale of class (D). Find a decomposition

Xt = Mt +At ∀t ∈ [0, 1],

where M is a martingale and A is an increasing predictable process, both with càdlàg
trajectories.

(c) Show through direct calculations that X is a good integrator.

Solution 1.2

(a) Since the Yi are non-negative, the following computations hold for t ∈ [0, 1]:

E[Xt] = E

[
Nt∑
i=1

Yi

]

= E

[
E

[
Nt∑
i=1

Yi | Nt

]]

= E

[
Nt∑
i=1

E [Yi | Nt]
]

= E

[
Nt

∫
(0,∞)

xdµ(x)
]

= λt

∫
(0,∞)

xdµ(x),

using independence and the distribution of the Yi.
Therefore, if X is going to be a submartingale then

∫
(0,∞) xdµ(x) =: µ0 <∞ is required. This

is in fact sufficient: the calculations above show that X is integrable. It is obviously adapted
to its natural filtration, and since it is (almost surely) increasing it must be a submartingale.

(b) Note that since X is increasing, for any stopping time τ (taking values on [0, 1]), Xτ ≤ X1.
SinceX1 is integrable (andXτ is non-negative), this means that {Xτ : τ is a stopping time on [0, 1]}
is uniformly integrable. Therefore (Xt)t∈[0,1] is of class (D).
We find the required decomposition:

Xt = (Xt − λµ0t) + λµ0t.

Clearly this is a valid decomposition, and At = λµ0t is increasing, predictable (even deter-
ministic) and càdlàg. Mt = Xt − λµ0t is clearly càdlàg since X is, and we want to show that
it is a martingale.
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Since X is adapted and integrable, so is M . To show that it is a martingale, note that

E[Mt | Fs] = Ms − λ(t− s) + E

[
Nt∑

i=Ns+1
Yi | Fs

]

= Ms − λµ0(t− s) + E

[
E

[
Nt∑

i=Ns+1
Yi | σ(Nt,Fs)

]
| Fs

]

= Ms − λµ0(t− s) + E

[
Nt∑

i=Ns+1
E [Yi | σ(Nt,Fs)] | Fs

]

= Ms − λµ0(t− s) + E

[
Nt∑

i=Ns+1
µ0 | Fs

]
= Ms − λµ0(t− s) + E [µ0(Nt −Ns) | Fs]
= Ms,

as we wanted (using again independence, the distribution of the Yi as well as independence of
increments of the Poisson process).

(c) Given a simple integrand H = H01{0} +
∑n
i=1 Hi1(τi,τi+1], we have that

|(H •X)t| =

∣∣∣∣∣
n∑
i=1

Hi(Xτi+1∧t −Xτi∧t)

∣∣∣∣∣
≤

n∑
i=1
|Hi||Xτi+1∧t −Xτi∧t|

≤
n∑
i=1
|Hi|(Xτi+1 −Xτi

)

≤ X1 sup
t∈[0,1]

|Ht|

Now, if we take simple integrands Hk converging to 0 in ucp topology, then we have that for
ε > 0,

P ( sup
t∈[0,1]

|(Hk •X)t| > ε) ≤ P ( sup
t∈[0,1]

|Hk
t |X1 > ε)

≤ P

(
sup
t∈[0,1]

|Hk
t | >

ε

M

)
+ P (X1 > εM)

for any M > 0. By choosing M large enough we can make the second term small, and then
by choosing k large enough we can make the first term small as well (using ucp convergence
of Hk to 0). This shows convergence of Hk •X to 0 in the ucp topology.
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Exercise 1.3 Let (Ω,F ,F, P ) be a stochastic basis satisfying the usual conditions. Let M be a
local martingale and X an adapted càdlàg process. Prove the following statements:

(a) M is a uniformly integrable martingale if and only if it is of class (D).

(b) Let X have terminal value X∞. Then X is a uniformly integrable martingale if and only if
for all stopping times τ , the variable Xτ is integrable and E[Xτ ] = E[X0].

(c) Let X be predictable and τ a stopping time. Then Xτ1τ<∞ is Fτ−-measurable.

(d) Let τ be a predictable finite stopping time. Then Mτ− = E[Mτ | Fτ−].

(e) Let M be predictable. Then M is continuous.

Hint: For (d), you may use the fact that τ is a predictable stopping time if and only if there exists
an announcing sequence (τn)∞n=1 for τ , defined as an increasing sequence of stopping times such
that τn ↑ τ and τn < τ P -a.s. on τ > 0.

Solution 1.3

(a) If M is a uniformly integrable martingale, by the martingale convergence theorem there
exists a limit M∞ ∈ L1(F) such that Mt = E[M∞ | Ft] for all t ≥ 0. Indeed, we obtain
Mτ = E[M∞ | Fτ ] for all stopping times τ , by the optional stopping theorem. Then, the
family {Mτ = E[M∞ | Fτ ], τ a finite stopping time} is uniformly integrable, as a family of
conditional expectations of an integrable random variable.
Conversely, let M be of class (D). Find a localising sequence (τn) for M , then for any s < t
we have

E[Mt∧τn
| Fs] = Ms∧τn

.

Note that Mt∧τn → Mt and Ms∧τn → Ms P -almost surely as n→∞. Since (Mt∧τn)∞n=1 is
uniformly integrable, the convergence is also in L1 (Vitali convergence theorem). Thus, we
obtain E[Mt | Fs] = Ms. Since M is integrable and adapted, it is a uniformly integrable
martingale.

(b) If X is a uniformly integrable martingale, then Xτ is integrable and E[Xτ ] = E[X0] for any
stopping time τ , by the optional stopping theorem (this also holds when τ =∞).
Suppose now thatXτ is integrable and E[Xτ ] = E[X0] for all stopping times τ . By assumption,
Xt is in particular integrable for each t ∈ [0,∞]. To show that X is a uniformly integrable
martingale, it suffices to show that Xt = E[X∞ | Ft], for each t ≥ 0.
By definition of conditional expectation, it is enough to show that E[Xt1A] = E[X∞1A] for
any event A ∈ Ft. By taking τ = t1A +∞1Ac , the equality holds from the assumption.

(c) We use the monotone class theorem. Let

H := {X : Ω× [0,∞)→ R | ∀τ a stopping time, Xτ1τ<∞ is Fτ− -measurable}.

It is obvious that H is a vector space, and likewise for any increasing sequence Xn ↑ X of
non-negative Xn ∈ H, we have that

Xτ1τ<∞ = lim
n→∞

Xn
τ 1τ<∞

is Fτ− -measurable.
Finally, we show that H ∈ H, for any simple predictable process H of the form

H = 1]s,t]1A
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or
H = 1{0}1A

where A ∈ Fs and A ∈ F0, respectively. This is enough, since processes of this form generate
the predictable σ-algebra P, so that H contains all predictable processes. We consider the
first case, as the second is similar. Note that

Hτ = 1s<τ≤t1A = 1{s<τ}∩A1τ≤t.

By definition of Fτ−, we have that {s < τ} ∩ A ∈ Fτ− for A ∈ Fs. Since {τ ≤ t} = {τ >
t}c ∈ Fτ− we conclude that Hτ is Fτ−, as we wanted.

(d) Assume first that M is a uniformly integrable martingale. From the hint, we may take an
announcing sequence (τn) for τ . Since M is a uniformly integrable martingale, it holds by the
optional stopping theorem that

Mτn
= E[Mτ | Fτn

]

for each n. Note that one can see (Mτn)∞n=1 as a discrete uniformly integrable martingale
with respect to the filtration Gn := Fτn

. The martingale convergence theorem gives that

Mτn → η

in L1 for some integrable random variable η. Moreover, we have that η is G∞-measurable,
where G∞ = σ (

⋃∞
n=1 Gn), and indeed η = E[Mτ | G∞]. So we just need to show that

G∞ = Fτ−, which is straightforward to check. We obtain

E[Mτ | Fτ−] = η = lim
n→∞

Mτn = Mτ−.

Now, we consider the general case. LetM be a local martingale and (Tn) a localising sequence.
We have that

E[Mτ | Fτ−]1τ≤Tn = E[Mτ1τ≤Tn | Fτ−]
= E[Mτ∧Tn1τ≤Tn | Fτ−]
= E[Mτ∧Tn | Fτ−]1τ≤Tn

= Mτ−∧Tn1τ≤Tn

= Mτ−1τ≤Tn ,

using that {τ ≤ Tn} ∈ Fτ− and that we proved the result for uniformly integrable martingales.
Therefore, E[Mτ | Fτ−] = Mτ− on {τ ≤ Tn}. Since

⋃∞
n=1{τ ≤ Tn} = Ω up to a null set, we

have that E[Mτ | Fτ−] = Mτ− P -a.s..

(e) If M is a predictable local martingale, we can apply both results (c) and (d). Since M
is predictable, for any finite stopping time we have that Mτ is Fτ−-measurable, so that
E[Mτ | Fτ−] = Mτ P -a.s. by (c). We also have that Mτ− = E[Mτ | Fτ−] for any predictable
finite stopping time by (d), so that Mτ = Mτ− P -a.s. for any predictable finite stopping time
τ . By the predictable section theorem it follows that M and M− are indistinguishable, and
so M is almost surely continuous (since we assume that it is càdlàg).
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Exercise 1.4 Let A be an increasing locally integrable process with A0 = 0. Show that, for an
increasing predictable process Ap with Ap0 = 0, the following conditions are equivalent:

1. A−Ap is a local martingale;

2. E[Apτ ] = E[Aτ ] for all stopping times τ ;

3. E[(H •Ap)∞] = E[(H •A)∞] for all nonnegative simple predictable processes H.

Show that there exists a unique such process Ap, known as the dual predictable projection or
compensator of A.

Hint: Use the Doob-Meyer decomposition theorem to prove uniqueness and existence.

Solution 1.4 3. ⇒ 2. is immediate by setting H = 1[0,τ [.
2. ⇒ 1.: Let (τn) be a localising sequence for A, i.e. such that E[Aτn

] = E[Apτn
] <∞. It follows

from 3b) that (A−Ap)τn is a uniformly integrable martingale, and so A−Ap is a local martingale.
1. ⇒ 3.: It is enough to check this for H = Hs1]s,t] for s < t and Hs a Fs-measurable random

variable. We need to check that

E[Hs(Apt −Aps)] = E[Hs(At −As)].

Let (τn) be a localising sequence for A−Ap, and we may assume that Aτn , (Ap)τn are integrable,
i.e. E[Aτn ], E[Apτn

] <∞. Since (A−Ap)τn is a uniformly integrable martingale, we obtain that

E[Hs(Apt∧τn
−Aps∧τn

)] = E[Hs(At∧τn
−As∧τn

)]

(by taking a conditional expectation). Since At∧τn
−As∧τn

and Apt∧τn
−Aps∧τn

are increasing in n,
and Hs ≥ 0, we obtain the result by the monotone convergence theorem.

Finally, we show that a unique such Ap exists. Once again, let (τn) be a localising sequence
such that E[Aτn

] <∞. Since A is increasing, it is clear that Aτn is a submartingale of class (D) for
each n, and therefore it has a unique Doob-Meyer decomposition

Aτn = Mn +Bn,

where Mn is a local martingale and Bn is an increasing predictable process, both started at 0.
We note that the (Mn) and (Bn) are consistent, in the sense that (Mn)τn−1 = Mn−1 and

(Bn)τn−1 = Bn−1 for each n. Indeed, we have that

Aτn−1 = Mn−1 +Bn−1

and
Aτn−1 = (Aτn)τn−1 = (Mn)τn−1 + (Bn)τn−1 ,

so that the uniqueness of the decomposition shows the consistency.
Next, we can define M = Mn and B = Bn on [0, τn[: since τn ↑ ∞, this defines M and B up to

a null set (the consistency of (Mn) and Bn) ensures that this definition make sense). We claim that
B = Ap is the process we want. It is clear from the definition that B is increasing and predictable
since the Bn are, and A−B = M is a local martingale since τn is a localising sequence. Therefore,
1. holds, as we wanted.

To see that B is the unique such process, let B̃ be another candidate. We can find a common
localising sequence (τn) for A−B and A− B̃. Then,

Aτn = (A−B)τn +Bτn = (A− B̃)τn + B̃τn

are two Doob-Meyer decompositions for Aτn , so that Bτn = B̃τn for each n, which implies that
B = B̃.
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