Mathematical Finance

Exercise sheet 12

Exercise 12.1 Let U be a utility function satisfying the Inada conditions, i.e. $U \in C^1(\mathbb{R}_+;\mathbb{R})$ is strictly increasing, strictly concave and

$$U'(0) := \lim_{x \searrow 0} U'(x) = +\infty$$
$$U'(+\infty) := \lim_{x \to +\infty} U'(x) = 0.$$

Let J be the Legendre transform of $-U(-\cdot)$,

$$J(y) := \sup_{x>0} (U(x) - xy).$$

and denote by $I := (U')^{-1}$ the inverse of the derivative of U. Show the following properties:

- 1. J is strictly decreasing and strictly convex.
- 2. $J'(0) = -\infty$, $J'(+\infty) = 0$, $J(0) = U(+\infty)$ and $J(+\infty) = U(0)$.
- 3. For any x > 0,

$$U(x) = \inf_{y>0} (J(y) + xy)$$

4. For any y > 0,

$$J(y) = U(I(y)) - yI(y).$$

5. J' = -I.

Solution 12.1

First we show that the supremum defining J is a maximum, i.e. for any y > 0, we have

$$J(y) = \sup_{x>0} (U(x) - xy) = U(x_y) - x_y y$$

for some $x_u > 0$.

Note that, letting $g_y(x) = U(x) - xy$, we have that g_y is differentiable and

$$g'_{u}(x) = U'(x) - y.$$

Since U is C^1 (i.e. U' is continuous), strictly convex (i.e. U' is strictly decreasing), with $U'(0) = +\infty$ and $U'(+\infty) = 0$ by the Inada conditions, we obtain exactly one solution to $U'(x_y) = y$. Moreover, g'_y is negative for $x > x_y$ and positive for $x < x_y$. Thus the maximum is obtained exactly at $x_y = (U')^{-1}(y)$, which is a continuous, decreasing function of y (since U' is). We keep using the notation x_y .

On the other hand, we can see that for $y \leq 0$, the maximum is obtained as $x \to +\infty$ (since g_y is increasing in x), which gives that $J(0) = U(+\infty)$ (possibly $= +\infty$) and $J(y) = +\infty$ for y < 0.

We show first that J is differentiable on $(0, +\infty)$. Note that the equation $U'(x_y) = y$ implies that x_y is increasing in y. Thus, we have the following: picking some arbitrary \bar{y} , and letting $\bar{x} = x_{\bar{y}}$,

$$J(y) = U(x_y) - x_y y$$

= $U(\bar{x}) - \bar{x}\bar{y} + \int_{\bar{x}}^{x_y} U'(w)dw - \int_{\bar{y}}^{y} (sdx_s + x_sds)$
= $U(\bar{x}) - \bar{x}\bar{y} + \int_{\bar{y}}^{y} U'(x_s)dx_s - \int_{\bar{y}}^{y} (sdx_s + x_sds)$

(using a Riemann-Stieltjes integral, chain rule and integration by parts).

Since $U'(x_s) = s$, this simplifies as

$$J(y) = J(\bar{y}) - \int_{\bar{y}}^{y} x_s ds$$

But since $x_s = (U')^{-1}(s)$ is a continuous function of s, this shows that J is differentiable with $J'(y) = -x_y$.

- 1. J is strictly decreasing and strictly convex since $J'(y) = -(U')^{-1}(y)$ is a strictly negative and strictly increasing function of y.
- 2. We have $J'(0) = -(U')^{-1}(0) = -\infty$ and $J'(+\infty) = -(U')^{-1}(+\infty) = 0$, by the Inada conditions. We already saw earlier that $J(0) = U(+\infty)$.

Note that $J(y) = \sup_{x>0}(U(x) - xy) \ge U(0)$ for any y > 0, by taking $x \to 0$. Moreover, $J(y) \le U(\epsilon)$ for small enough y > 0, since for $y \ge U'(\epsilon)$, we have

$$U(x) - xy \le U(x) \le U(\epsilon)$$

if $x \leq \epsilon$, and we know that the maximiser x_y must be in $[0, \epsilon]$ (since U' is decreasing). Thus, taking $\epsilon \to 0$ we get $J(+\infty) = U(0)$.

3. By definition, $J(y) = \sup_{x>0} (U(x) - xy)$, from which we see that

$$J(y) - U(x) \ge -xy$$

for any $y, x \ge 0$. We can also write it as

$$U(x) \le J(y) + xy.$$

On the other hand, for any x > 0 we know that this inequality is attained at y = U'(x), and therefore

$$U(x) = \inf_{y>0} J(y) + xy.$$

In the case of x = 0, we saw before that $U(0) = J(+\infty)$, and we can show that this is equal to the infimum.

- 4. We already showed this above.
- 5. Likewise.

Exercise 12.2 Let the financial market $S = (S_k)_{k=0,...,N}$ be defined over the *finite* filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_k)_{k=0,...,N}, P)$ and satisfy $\mathcal{M}^a(S) \neq \emptyset$, and let U be a utility function satisfying the Inada conditions. Consider the value functions

$$u(x) = \sup_{X_T \in C(x)} E[U(X_T)] \text{ and } v(y) = \inf_{Q \in \mathcal{M}^a(S)} E\left[V\left(y\frac{dQ}{dP}\right)\right],$$

where V is the convex conjugate of U and

$$C(x) = \{X_T \in L^0(\Omega, \mathcal{F}_T, P) \mid \forall Q \in \mathcal{M}^a(S) : E_Q[X_T] \le x\}.$$

Show that the optimisers $\hat{X}_T(x)$, $\hat{Q}(x)$ and $\hat{y}(x)$ satisfy $U'\left(\hat{X}_T(x)\right) = \hat{y}(x)\frac{d\hat{Q}(x)}{dP}$ for each $x \in \operatorname{dom}(U)$.

Solution 12.2 From minimax considerations, and writing the Lagrangian $L(X_T, y, Q) = E\left[U(X_T) - y\left(\frac{dQ}{dP}X_T - x\right)\right]$ for $X_T \in L^0(\Omega), y > 0$ and $Q \in \mathcal{M}^a(S)$, we have

$$\sup_{X_T \in C(x)} E[U(X_T)] = \sup_{X_T} \inf_{y > 0, Q \in \mathcal{M}^a(S)} L(X_T, y, Q)$$
$$= \sup_{X_T} \inf_{y > 0, Q \in \mathcal{M}^a(S)} E\left[U(X_T) - y\left(\frac{dQ}{dP}X_T - x\right)\right]$$
$$= \inf_{y > 0, Q \in \mathcal{M}^a(S)} \sup_{X_T} E\left[U(X_T) - y\left(\frac{dQ}{dP}X_T - x\right)\right]$$
$$= \inf_{y > 0, Q \in \mathcal{M}^a(S)} E\left[V\left(y\frac{dQ}{dP}\right)\right] - xy$$
$$= \inf_{y > 0} v(y) - xy.$$

Note that we obtain the third line by maximising for each fixed ω , since we no longer have any constraint on X_T (other than measurability). From question 1 we know that this supremum is attained exactly when $U'(X_T) = y \frac{dQ}{dP}$. Furthermore, the last infimum is attained exactly when $y = \hat{y}(x)$, and the infimum over the martingale measure is obtained exactly when $\frac{dQ}{dP} = \frac{d\hat{Q}(x)}{dP}$. Likewise, the supremum over X_T is attained exactly when $\hat{X}_T(x)$. Therefore, the unique saddle point of the Lagrangian satisfies $U'\left(\hat{X}_T(x)\right) = \hat{y}(x)\frac{d\hat{Q}(x)}{dP}$, as we wanted.

Exercise 12.3 (optional) Consider the utility function $u_{\gamma}(x) = \frac{x^{\gamma}}{\gamma}$, for x > 0 and $\gamma \in (-\infty, 1) \setminus \{0\}$. Show that $u_{\gamma}(x) - \frac{1}{\gamma} \to \log x$ as $\gamma \to 0$. Compute the conjugate functions of u_{γ} and \log .

Solution 12.3 Fixing x, we can easily see that

$$u_{\gamma}(x) - \frac{1}{\gamma} = \frac{x^{\gamma} - 1}{\gamma}$$
$$= \frac{e^{\gamma \log x} - 1}{\gamma}$$
$$= \frac{1 + \gamma \log x + o(\gamma) - 1}{\gamma}$$
$$= \log x + o(1) \to \log x$$

as $\gamma \to 0.$ This shows the desired convergence.

To compute the conjugate functions, we have that

$$v_{\gamma}(u_{\gamma}'(x)) = -xu_{\gamma}'(x) + u_{\gamma}(x)$$

$$\Rightarrow v_{\gamma}(x^{\gamma-1}) = -x^{\gamma} + \frac{x^{\gamma}}{\gamma}$$

$$\Rightarrow v_{\gamma}(x^{\gamma-1}) = \frac{1-\gamma}{\gamma}x^{\gamma}$$

$$\Rightarrow v_{\gamma}(y) = \frac{\gamma-1}{\gamma}y^{\frac{\gamma}{\gamma-1}}.$$

For the logarithm,

$$v(\log'(x)) = -x\log'(x) + \log(x)$$

$$\Rightarrow v\left(\frac{1}{x}\right) = -1 + \log(x)$$

$$\Rightarrow v(y) = -1 - \log(y).$$

Exercise 12.4 Assume that the interest rate is 0, i.e. there exists a riskless asset with constant value 1, and consider the Bachelier model

$$dS_t = \mu dt + \sigma dB_t, \quad S_0 \in \mathbb{R},$$

with $\mu \in \mathbb{R}$ and $\sigma > 0$.

Compute the optimal utility and optimal strategy associated with the problem

$$J_0 = \sup_{\vartheta \in \Theta_{\mathrm{adm}}^x} E\left[u\left(x + \int_0^T \vartheta_s dS_s\right)\right],$$

for the cases of power utility $u_{\gamma}(x)$ and log-utility $u(x) = \log(x)$.

Hint. To find a good ansatz for the log-utility case, try (heuristically) taking a limit of the power utility case as $\gamma \to 0$.

Solution 12.4 We compute the Hamilton-Jacobi-Bellman equation. Assuming that we have

$$J_t(\vartheta) = \operatorname{ess\,sup}_{\psi \in \Theta(t,\vartheta)} E[U(X_T^{\psi}) \mid \mathcal{F}_t] = k(t, X_t^{\vartheta}),$$

where $X^{\vartheta} = x + \vartheta \bullet S$, we can use Itô's formula to obtain

$$dJ_t(\vartheta) = k_t(t, X_t^{\vartheta})dt + k_x(t, X_t^{\vartheta})\vartheta_t(\mu dt + \sigma dB_t) + \frac{1}{2}k_{xx}(t, X_t^{\vartheta})\vartheta_t^2\sigma^2 dt.$$

With the martingale optimality principle in mind, we maximise over p the expression

$$k_t(t, X_t^{\vartheta}) + \mu k_x(t, X_t^{\vartheta})p + \frac{\sigma^2}{2}k_{xx}(t, X_t^{\vartheta})p^2,$$

which has a maximum at

$$\hat{p} = -\frac{\mu k_x(t, X_t^{\vartheta})}{\sigma^2 k_{xx}(t, X_t^{\vartheta})}.$$

Setting $p = \hat{p}$, the (heuristic) drift term for the optimal strategy $\hat{\vartheta}$ becomes

$$k_t(t, X_t^{\hat{\vartheta}}) - \frac{\mu^2 k_x^2(t, X_t^{\vartheta})}{2\sigma^2 k_{xx}(t, X_t^{\hat{\vartheta}})} = 0,$$

by the martingale optimality principle. We then obtain the HJB equation for k:

$$k_t - \frac{\mu^2 k_x^2}{2\sigma^2 k_{xx}} = 0$$

Now, for power utility u_{γ} , we try a solution of the form

$$k(t,x) = f(t)\frac{x^{\gamma}}{\gamma},$$

where f(T) = 1 to satisfy the terminal condition. With this ansatz, we obtain

$$f'(t)\frac{x^{\gamma}}{\gamma} = \frac{\mu^2 f(t)^2 x^{2\gamma-2}}{2\sigma^2(\gamma-1)f(t)x^{\gamma-2}}$$

$$\Rightarrow f'(t) = \frac{\mu^2 \gamma}{2\sigma^2(\gamma-1)}f(t)$$

$$\Rightarrow f(t) = e^{\kappa(T-t)},$$

where $\kappa_{\gamma} = -\frac{\mu^2 \gamma}{2\sigma^2(\gamma-1)}$.

Updated: December 22, 2020

The optimal strategy is then given by the feedback control

$$\hat{\vartheta}_t = \hat{p} = -\frac{\mu X_t^\vartheta}{\sigma^2(\gamma - 1)}.$$

In the case of logarithmic utility, we can find the following ansatz by taking a limit (or otherwise):

~

$$k(t, x) = g(t) + \log(x)$$

where g(T) = 0. With this ansatz, we obtain

$$g'(t) = \frac{\mu^2 \frac{1}{x^2}}{-2\sigma^2 \frac{1}{x^2}}$$
$$\Rightarrow g'(t) = -\frac{\mu^2}{2\sigma^2}$$
$$\Rightarrow g(t) = \kappa(T-t),$$

where $\kappa = \frac{\mu^2}{2\sigma^2}$. The optimal strategy is then given by the feedback control

$$\hat{\vartheta}_t = \hat{p} = \frac{\mu X^{\hat{\vartheta}_t}}{\sigma^2}.$$