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Exercise 13.1 Consider a complete financial market with time interval [0,77], riskless asset
SY = et for some r € R and a d-dimensional risky asset S, with their natural filtration and unique
separating measure Q).

(a) Find the arbitrage-free price at time ¢ of a bounded European (Fr-measurable) payoff H,
denoted by 7 (H).

(b) Let (Ut)iepo,r) be a non-negative bounded adapted process. Find the arbitrage-free price at
time ¢ of the American option with payoff U, denoted by 7/ (U).

(c) Give an alternative characterisation of 7/'(U) as a Snell envelope.

(d) In terms of an European option, give a necessary and sufficient condition for a given stopping
time 7 to be an optimal exercise time of the American option.

(e) Suppose that r > 0 and that the riskless asset follows a Black-Scholes model. Show that the
American call option has the same value as the European call option.

(f) Suppose that U is continuous and uniformly bounded. Define the stopping time 7 = inf{t >
0:7(U) = U;}. Show that 7 < T, that 7 is an optimal exercise time for the American
option and that the stopped process (74/S%)7 is a Q-martingale.

(g) Suppose r = 0. Let M be a non-negative local martingale such that My = 1 and M; = 0 for
all t > 1, and that M? is a martingale for each t € [0,1). Consider the process Uy = M; + ¢
on [0,1] (note that U is not bounded in this case). Show that V; = M; + 1 on [0,1) and
Vi1 = U; = 1. Deduce that 7 = 1 is not optimal.

Solution 13.1

(a) Since the market is complete, and since H is bounded and S° is deterministic, the discounted
arbitrage-free price is a martingale under @). Therefore, the undiscounted price is

i (H) = S} Eq[H/S} | Fil.
(b) Likewise, the arbitrage-free price is equal to the superreplication, since the market is complete.
By results from the lectures, this price is equal to
A _ Q0 . 0
T (U) = Sy ess SUpres, » £q [U-/57 | Fil.

(c) Tt holds that
"A(U)/S0 = esssupyes, , EolUr/S° | F)

is a supermartingale under Q. Moreover, 74(U)/S° > U/S°, and one can show that 7 (U)/S°
is the minimal supermartingale satisfying this lower bound. Therefore, 7(U)/S° is the Snell
envelope of U/SY.
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(d) Note that 7 is optimal if and only if
3 (U) = Eq[U-/SY)-
Using the European pricing formula, this is equivalent to saying that
T (U) = 7 (U, $9./52).

Therefore, the American option is equivalent to an European option delivering a payoff U, at
the random time 7, or equivalently the payoff U,S%/SY at time T (which is adjusted for the
interest rate).

(e) For any 7 < T, we have that
(S; —K)te™™ = (S,e7"m — Ke ') T
§ (STefr‘r o KefrT)+
< E[(Spe™™ — Ke ™) | F]
5 (St — K)*),

r.

using Jensen’s inequality, since (z — Ke~"7)% is a convex function and Se™"" is a martingale

under Q.

f) Note that 72 (U) = Up, therefore 7 < T.
T

We show that 7 is optimal. Define 7,, := inf{t > 0: 7}(U) < U; +1/n} AT. We claim that
T =7 := limy_00 7r. Indeed, (7,) is an increasing sequence, so that it increases to some
limit 7, and each 7, < 7 so that 7 < 7. If w is such that (7,,) converges stationarily, i.e.
Tm (W) = Tig1(w) = ... = 7(w) for some m, then it is clear that 7(w) = 7(w), since for each n
one can find ¢, such that ¢, <7+ L and 7} (U) < Uy, + 1/n, and since 74(U) and U are
cadlag, it follows that 72(U) = Us.

Consider the case where 7, (w) is strictly increasing to 7(w). Note that, for each n,

EV;

Fr ] <U. +1/n,

n

by definition of 7,, and the supermartingale property. The right-hand side converges to U; as
n — oo, by continuity of U, while the left-hand side converges to E[V; | F+_]. But it holds
that V> > U; almost surely, and therefore this implies that V> = U; and 7 = 7.

With this preliminary step completed, we show that 7 is optimal. For each n, one can find a
stopping time o such that
EqlU,/S8) > m(U) — 1/n?.

First, we show that one may replace o with o A 7. Indeed, we have

EQ[Ua/SO] = Eq EQ[UG/Sg | ]:T]]

Eollys Uy /80 | Frl + Egllo<rUs /S0 | Fol]
Losr Eg[Usyr /S0 | Frl + Locr Eq[Uy /SO | F]]
Losr Vi /82 + 1g<r EQUs /SY | Fr]

LosrUr /S + 1o<, Eq[U, /SO | F]

EQ[los Us /S0 + 1,<,U, /S0 | F/|

UU/\T/SOO'/\’T]‘

A
=
S L L 0 L L8
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So, we may assume that o < 7. Next, we show that Q(o < 7,) < 2/n. Indeed, note that
on {o < 7}, it holds that V,, > U, + % By definition, one can find a new stopping time
o’ such that ¢/ > o, 0’ =0 on {0 > 7,} and E[U,/ /S | F,] > U,/S% + % ono <7, In
particular, we have
5 (U) = Eq[Us /53]
= EQ[EQ[UU’/SS' | Foll

1
= EQ ]1027'71 Ua/Sg + 1o<r, <UU/SS + %)]

— Bo[U,/SY] + %Q(a <),

which combined with the definition of o gives the result.

Next, we have that

1
7o (U) = — < Eq[Us/S5)]
= Eqllo<r,Us /S + Eqllr>0>7,Uq /S0

2Eol sup Vi/SY + Eo sup |Ua/S® — U, /S| + EolUs/S%).

n w€[0,7] WE[Ty,T)

IN

Clearly, the left-hand side tends to 0 as n — oco. Since U is bounded, which implies that V is
bounded as well, the first term on the right also tends to 0 as n — oco. Moreover, the second
term on the right converges to 0 as n — oo by the dominated convergence theorem.

Therefore, we obtain that
o (U) < Eq[U/S7),
which shows optimality.

The martingale property then follows easily, since V/SY is a supermartingale, and for any
t € [0,77] it holds that

EVinr/Sins] 2 E[U-/S7] = E[Vo).

It is clear that U; = 1 and Vi = Uy, since S11 = {1}.
Since M is a non-negative local martingale, it is a supermartingale. We have that, for ¢ € [0,1)
and any stopping time 7 < 1,

E[UT‘ft]:E[MT+T|ft] SMt+1

Therefore, V; < M; + 1.

Conversely, let 7, be a localising sequence for M. Then, we have that

Vi > E[U,,m1 | i) = E[M,

n

MA T AL F] =M ae+ Elm A1 | F.

Since 7, T oo almost surely, this converges to M; 4+ 1 almost surely.

Finally, we conclude that 7 = 1 is not optimal. Indeed, E[U;] =1, but Vo = My + 1 = 2, so
that 7 does not achieve the optimal value.
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Exercise 13.2 Consider a Bachelier model with riskless asset of constant price 1 and a one-
dimensional risky asset of price
Sy = S + CTBt,

for some constant Sp.
Consider the payoff process
Ut =49 (St7 1/;5) )

for g a non- negative bounded measurable function of the asset price S and its modified running

average Y; = (Yo + fo Su du) (for some constant Yp).

t+1
(a) Argue why the value of the American option associated with U can be expressed as
mt(U) = f (t, 8¢, V)
for some function f.
(b) Assuming that f is smooth enough, write a free boundary partial differential equation for f.

(c) Suppose that g is smooth. Find a condition that characterises an optimal exercise time 7 < T'
for U, in terms of the derivatives of g.

(d) Let g(S;,Y:) = (S; — Y;)%. Compute (heuristically) the optimal exercise time 7.
Solution 13.2
(a) Note that

7 (U) = esssup, ¢, , Eq[Usr | Fi]
= essSUp,¢s, » Lo [9 (S Yr) | Fi

t+1 T—1 1 T
= esssup,cg, . Eq {g (St+a(BT—Bt),T+1Yt+ T+15t+ T+1/t U(Bu—Bt)du> |]-'t]

We see that the law of (Us)s>¢+ conditional on F; depends only on S; and Y; (as well as t),
since the increments B, — B; are independent of F;. Therefore, one can expect that 7TA(U )
can be expressed by such a function f.

(b) Note that 74(U) is a supermartingale, and moreover one can show that its finite variation is
constant on {74 (U) > U}. By Itd’s formula we have

1 2
df (t7 Sta Yt) = atf (t, Sta Yrt) dt + 0-88.]0 (ta Sta Y;f) dBt + m(st - Yt)auf (t7 St7 }/t) dt + %8ssf (t7 St; Yt) dt

This leads to the free boundary partial differential equation

Ocf + 71 (s — )0y f + G 0sf =0, if f(t,5,9) > g(s,9),
f(ts,y) > g(s, )

Onf + m5(s —y)oyf + z 5 0ss f <0,

f(T,s,y) = 9(87 Y).
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(c) Suppose that f(t,s,y) = g(s,y) for some particular ¢, s,y. Since f > g on a neighbourhood
of (t,s,y), we obtain that 0, f(¢,s,y) = 0, as well as 9, f(¢,s,y) = 9yg(s,y) and Ossf > 0ss9.

Therefore, the free boundary partial differential equation yields that

2 2

1 o o
> ——(s— — s > - 7 _
O i atf(ta Svy)+t + 1(5 y)ayf(tv S7y)+ 2 886f(t7 S7y) - t + 1 (8 y)ayg(ta Say)+ 2 assg(ta S? y)

In other words, if 7 < T is an optimal exercise time then it must satisfy

o2 1
5 YUss 9 T?YT S_
28 9(7, ) T+1

(ST - YT)ayg(Tv S‘ra Y‘r)
almost surely.

(d) From the previous part, if the optimal exercise time 7 < T, then we have
. Bug(r 80 Vo) < —— (8, — V)0,9(r. 50V
25597—7 T Xr) > T T 7)Oyg\T, 97, Y1 ).
Computing these derivatives, we obtain
2
< (S, -V,
7= T+ 1( )

Assuming that the option is exercised as soon as this condition holds, we obtain that

T=inf{t >0:|S: =Y =0\ (t+1)/2} AT.
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Exercise 13.3 Consider a market model where the n-dimensional stock price process X satisfies

d10g X:(1) = 30t + 3 o ()W (1),

v=1

where the 7; and o;, are progressively measurable processes satisfying appropriate integrability
conditions.

(a) Define the market portfolio ¢ and what it means for a portfolio 7 to be functionally generated
by a function S.

(b) Write down the formula for the portfolio 7 generated by S, a positive C? function defined on
a neighbourhood U of the simplex A™ such that for each i, x;D; log S(x) is bounded on A™.

(¢) Compute the portfolios generated by the following functions:

o S(x)=1

e S(z) =wix1 + ...+ wyx,, where the w; are non-negative and not all equal to 0.

e S(z) =" ... 2P where the p; are constants adding up to 1.

o S(z) = (w1l + ...+ wnxﬁ)l/p, where the w; are non-negative and not all equal to 0
and p >0

Solution 13.3
(a) The market portfolio has total value

Z,(t) = X1 (t) + ...+ X (L),

so that the weights are proportional to the market capitalisations:

Xi(t)
pi(t) = :
Zu(t)
We say that a portfolio 7 (with value Z.) is functionally generated by S if its relative return

is given by
dlog(Z(1)/Z, (1)) = dlog S(u(t)) + dO(®),
where O is a finite variation process, called the drift process associated with S.
(b) For such S, the portfolio generated by S is given by the formula
mi(t) = | Dilog S(u(t)) +1 =Y p;(t)D;log S(u(t)) | pa(t).
j=1

(¢) e We immediately obtain that = = p.

e We compute

Dilog S(u(t)) +1— 3" iy (#)D; log S(u(t)) | (1)
j=1

Wz(t)

w; i w;
= . +1- (t !
wipn () + - -+ watin(t) ;M( )wml () + ...+ wopn(t)

wi(t)

w;fu; ()
wip(t) + ..+ Waptn(t)
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This can be seen as a modification of the market portfolio, weighted by the parameters
Wi .

e We have

mi(t) = | Dilog S(u(t)) + 1= p;(t)D;log S(u(t)) | pa(t)

j=1

= | pa/ps(®) + 1= s (O)ps /15 (1) | pa(t)

j=1
= Di-

This portfolio invests a fixed proportion p; of its value in each stock i. In the case

PL= .. = Pp = %, this corresponds to an equal-weighted portfolio.

e We compute

mi(t) = | Dilog S(u(t)) +1 =Y u;(t)D;log S(u(t)) | pa(t)

_ <wiu,~(t)p1 (w1 (E)P 4+ ...+ wppn (B)P)
(wipa ()P + ... + wnun(t)p)l/p

- p-1 p py—1+1/p
_ " Wiy ()P~ (wipg (0P + ...+ wopn (H)P) T > it
;M " (wip (6P + ... —l—wnpn(t)p)l/l’ pa(t)

—1+1/p
+1

_ w;pi (t)”
(wy a1 (8)P + . . . + We i (1)P)
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