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Exercise 13.1 Consider a complete financial market with time interval [0, T ], riskless asset
S0
t = ert for some r ∈ R and a d-dimensional risky asset S, with their natural filtration and unique

separating measure Q.

(a) Find the arbitrage-free price at time t of a bounded European (FT -measurable) payoff H,
denoted by πEt (H).

(b) Let (Ut)t∈[0,T ] be a non-negative bounded adapted process. Find the arbitrage-free price at
time t of the American option with payoff U , denoted by πAt (U).

(c) Give an alternative characterisation of πAt (U) as a Snell envelope.

(d) In terms of an European option, give a necessary and sufficient condition for a given stopping
time τ to be an optimal exercise time of the American option.

(e) Suppose that r ≥ 0 and that the riskless asset follows a Black-Scholes model. Show that the
American call option has the same value as the European call option.

(f) Suppose that U is continuous and uniformly bounded. Define the stopping time τ = inf{t ≥
0 : πAt (U) = Ut}. Show that τ ≤ T , that τ is an optimal exercise time for the American
option and that the stopped process (πA/S0)τ is a Q-martingale.

(g) Suppose r = 0. Let M be a non-negative local martingale such that M0 = 1 and Mt = 0 for
all t ≥ 1, and that M t is a martingale for each t ∈ [0, 1). Consider the process Ut = Mt + t
on [0, 1] (note that U is not bounded in this case). Show that Vt = Mt + 1 on [0, 1) and
V1 = U1 = 1. Deduce that τ = 1 is not optimal.

Solution 13.1

(a) Since the market is complete, and since H is bounded and S0 is deterministic, the discounted
arbitrage-free price is a martingale under Q. Therefore, the undiscounted price is

πEt (H) = S0
tEQ[H/S0

T | Ft].

(b) Likewise, the arbitrage-free price is equal to the superreplication, since the market is complete.
By results from the lectures, this price is equal to

πAt (U) = S0
t ess supτ∈St,T

EQ[Uτ/S0
τ | Ft].

(c) It holds that
πAt (U)/S0

t = ess supτ∈St,T
EQ[Uτ/S0

τ | Ft]

is a supermartingale under Q. Moreover, πA(U)/S0 ≥ U/S0, and one can show that πA(U)/S0

is the minimal supermartingale satisfying this lower bound. Therefore, πA(U)/S0 is the Snell
envelope of U/S0.
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(d) Note that τ is optimal if and only if

πA0 (U) = EQ[Uτ/S0
τ ].

Using the European pricing formula, this is equivalent to saying that

πA0 (U) = πE0 (UτS0
T /S

0
τ ).

Therefore, the American option is equivalent to an European option delivering a payoff Uτ at
the random time τ , or equivalently the payoff UτS0

T /S
0
τ at time T (which is adjusted for the

interest rate).

(e) For any τ ≤ T , we have that

(Sτ −K)+e−rτ = (Sτe−rτ −Ke−rτ )+

≤ (Sτe−rτ −Ke−rT )+

≤ E[(ST e−rT −Ke−rT )+ | Fτ ]
= πE0 ((ST −K)+),

using Jensen’s inequality, since (x−Ke−rT )+ is a convex function and Se−r· is a martingale
under Q.

(f) Note that πAT (U) = UT , therefore τ ≤ T .
We show that τ is optimal. Define τn := inf{t ≥ 0 : πAt (U) ≤ Ut + 1/n} ∧ T . We claim that
τ = τ̂ := limn→∞ τn. Indeed, (τn) is an increasing sequence, so that it increases to some
limit τ̂ , and each τn ≤ τ so that τ̂ ≤ τ . If ω is such that (τn) converges stationarily, i.e.
τm(ω) = τm+1(ω) = . . . = τ̂(ω) for some m, then it is clear that τ̂(ω) = τ(ω), since for each n
one can find tn such that tn ≤ τ̂ + 1

n and πAtn(U) ≤ Utn + 1/n, and since πA(U) and U are
càdlàg, it follows that πAτ̂ (U) = Uτ̂ .
Consider the case where τn(ω) is strictly increasing to τ̂(ω). Note that, for each n,

E[Vτ̂ | Fτn
] ≤ Uτn

+ 1/n,

by definition of τn and the supermartingale property. The right-hand side converges to Uτ̂ as
n→∞, by continuity of U , while the left-hand side converges to E[Vτ̂ | Fτ̂−]. But it holds
that Vτ̂ ≥ Uτ̂ almost surely, and therefore this implies that Vτ̂ = Uτ̂ and τ = τ̂ .
With this preliminary step completed, we show that τ is optimal. For each n, one can find a
stopping time σ such that

EQ[Uσ/S0
σ] ≥ πA0 (U)− 1/n2.

First, we show that one may replace σ with σ ∧ τ . Indeed, we have

EQ[Uσ/S0
σ] = EQ[EQ[Uσ/S0

σ | Fτ ]]
= EQ[EQ[1σ>τUσ/S0

σ | Fτ ] + EQ[1σ≤τUσ/S0
σ | Fτ ]]

= EQ[1σ>τEQ[Uσ∨τ/S0
σ∨τ | Fτ ] + 1σ≤τEQ[Uσ/S0

σ | Fτ ]]
≤ EQ[1σ>τVτ/S0

τ + 1σ≤τEQ[Uσ/S0
σ | Fτ ]]

= EQ[1σ>τUτ/S0
τ + 1σ≤τEQ[Uσ/S0

σ | Fτ ]]
= EQ[EQ[1σ>τUτ/S0

τ + 1σ≤τUσ/S
0
σ | Fτ ]]

= EQ[Uσ∧τ/S0
σ∧τ ].
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So, we may assume that σ ≤ τ . Next, we show that Q(σ < τn) ≤ 2/n. Indeed, note that
on {σ < τn}, it holds that Vσ ≥ Uσ + 1

n . By definition, one can find a new stopping time
σ′ such that σ′ ≥ σ, σ′ = σ on {σ ≥ τn} and E[Uσ′/S0

σ′ | Fσ] ≥ Uσ/S
0
σ + 1

2n on σ < τn. In
particular, we have

πA0 (U) ≥ EQ[Uσ′/S0
σ′ ]

= EQ[EQ[Uσ′/S0
σ′ | Fσ]]

≥ EQ
[
1σ≥τn

Uσ/S
0
σ + 1σ<τn

(
Uσ/S

0
σ + 1

2n

)]
= EQ[Uσ/S0

σ] + 1
2nQ(σ < τn),

which combined with the definition of σ gives the result.
Next, we have that

πA0 (U)− 1
n2 ≤ EQ[Uσ/S0

σ]

= EQ[1σ<τn
Uσ/S

0
σ] + EQ[1τ≥σ≥τn

Uσ/S
0
σ]

≤ 2
n
EQ[ sup

u∈[0,τn]
Vu/S

0
u] + EQ[ sup

u∈[τn,τ ]
|Uu/S0

u − Uτ/S0
τ |] + EQ[Uτ/S0

τ ].

Clearly, the left-hand side tends to 0 as n→∞. Since U is bounded, which implies that V is
bounded as well, the first term on the right also tends to 0 as n→∞. Moreover, the second
term on the right converges to 0 as n→∞ by the dominated convergence theorem.
Therefore, we obtain that

πA0 (U) ≤ EQ[Uτ/S0
τ ],

which shows optimality.
The martingale property then follows easily, since V/S0 is a supermartingale, and for any
t ∈ [0, T ] it holds that

E[Vt∧τ/S0
t∧τ ] ≥ E[Uτ/S0

τ ] = E[V0].

(g) It is clear that U1 = 1 and V1 = U1, since S1,1 = {1}.
SinceM is a non-negative local martingale, it is a supermartingale. We have that, for t ∈ [0, 1)
and any stopping time τ ≤ 1,

E[Uτ | Ft] = E[Mτ + τ | Ft] ≤Mt + 1.

Therefore, Vt ≤Mt + 1.
Conversely, let τn be a localising sequence for M . Then, we have that

Vt ≥ E[Uτn∧1 | Ft] = E[Mτn∧1 + τn ∧ 1 | Ft] = Mτn∧t + E[τn ∧ 1 | Ft].

Since τn ↑ ∞ almost surely, this converges to Mt + 1 almost surely.
Finally, we conclude that τ = 1 is not optimal. Indeed, E[Uτ ] = 1, but V0 = M0 + 1 = 2, so
that τ does not achieve the optimal value.
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Exercise 13.2 Consider a Bachelier model with riskless asset of constant price 1 and a one-
dimensional risky asset of price

St = S0 + σBt,

for some constant S0.
Consider the payoff process

Ut = g (St, Yt) ,

for g a non-negative bounded measurable function of the asset price S and its modified running
average Yt = 1

t+1

(
Y0 +

∫ t
0 Sudu

)
(for some constant Y0).

(a) Argue why the value of the American option associated with U can be expressed as

πAt (U) = f (t, St, Yt)

for some function f .

(b) Assuming that f is smooth enough, write a free boundary partial differential equation for f .

(c) Suppose that g is smooth. Find a condition that characterises an optimal exercise time τ < T
for U , in terms of the derivatives of g.

(d) Let g(St, Yt) = (St − Yt)2. Compute (heuristically) the optimal exercise time τ .

Solution 13.2

(a) Note that

πAt (U) = ess supτ∈St,T
EQ[Uτ | Ft]

= ess supτ∈St,T
EQ [g (Sτ , Yτ ) | Ft]

= ess supτ∈St,T
EQ

[
g

(
St + σ(Bτ −Bt),

t+ 1
τ + 1Yt + τ − t

τ + 1St + 1
τ + 1

∫ τ

t

σ(Bu −Bt)du
)
| Ft

]
.

We see that the law of (Us)s≥t conditional on Ft depends only on St and Yt (as well as t),
since the increments Bu −Bt are independent of Ft. Therefore, one can expect that πA(U)
can be expressed by such a function f .

(b) Note that πA(U) is a supermartingale, and moreover one can show that its finite variation is
constant on {πA(U) > U}. By Itô’s formula we have

df (t, St, Yt) = ∂tf (t, St, Yt) dt+ σ∂sf (t, St, Yt) dBt + 1
t+ 1(St − Yt)∂yf (t, St, Yt) dt+ σ2

2 ∂ssf (t, St, Yt) dt.

This leads to the free boundary partial differential equation


∂tf + 1

t+1 (s− y)∂yf + σ2

2 ∂ssf = 0, if f(t, s, y) > g(s, y),
f(t, s, y) ≥ g(s, y),

∂tf + 1
t+1 (s− y)∂yf + σ2

2 ∂ssf ≤ 0,
f(T, s, y) = g(s, y).
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(c) Suppose that f(t, s, y) = g(s, y) for some particular t, s, y. Since f ≥ g on a neighbourhood
of (t, s, y), we obtain that ∂tf(t, s, y) = 0, as well as ∂yf(t, s, y) = ∂yg(s, y) and ∂ssf ≥ ∂ssg.
Therefore, the free boundary partial differential equation yields that

0 ≥ ∂tf(t, s, y)+ 1
t+ 1(s−y)∂yf(t, s, y)+σ2

2 ∂ssf(t, s, y) ≥ 1
t+ 1(s−y)∂yg(t, s, y)+σ2

2 ∂ssg(t, s, y).

In other words, if τ < T is an optimal exercise time then it must satisfy

σ2

2 ∂ssg(τ, Sτ , Yτ ) ≤ − 1
τ + 1(Sτ − Yτ )∂yg(τ, Sτ , Yτ )

almost surely.

(d) From the previous part, if the optimal exercise time τ < T , then we have

σ2

2 ∂ssg(τ, Sτ , Yτ ) ≤ − 1
τ + 1(Sτ − Yτ )∂yg(τ, Sτ , Yτ ).

Computing these derivatives, we obtain

σ2 ≤ 2
τ + 1(Sτ − Yτ )2.

Assuming that the option is exercised as soon as this condition holds, we obtain that

τ = inf{t ≥ 0 : |St − Yt| = σ
√

(t+ 1)/2} ∧ T.
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Exercise 13.3 Consider a market model where the n-dimensional stock price process X satisfies

d logXi(t) = γi(t)dt+
n∑
ν=1

σiν(t)dWν(t),

where the γi and σiν are progressively measurable processes satisfying appropriate integrability
conditions.

(a) Define the market portfolio µ and what it means for a portfolio π to be functionally generated
by a function S.

(b) Write down the formula for the portfolio π generated by S, a positive C2 function defined on
a neighbourhood U of the simplex ∆n such that for each i, xiDi logS(x) is bounded on ∆n.

(c) Compute the portfolios generated by the following functions:

• S(x) = 1.
• S(x) = w1x1 + . . .+ wnxn, where the wi are non-negative and not all equal to 0.
• S(x) = xp1

1 . . . xpn
n , where the pi are constants adding up to 1.

• S(x) = (w1x
p
1 + . . .+ wnx

p
n)1/p, where the wi are non-negative and not all equal to 0

and p > 0.

Solution 13.3
(a) The market portfolio has total value

Zµ(t) = X1(t) + . . .+Xn(t),

so that the weights are proportional to the market capitalisations:

µi(t) = Xi(t)
Zµ(t) .

We say that a portfolio π (with value Zπ) is functionally generated by S if its relative return
is given by

d log(Zπ(t)/Zµ(t)) = d logS(µ(t)) + dΘ(t),
where Θ is a finite variation process, called the drift process associated with S.

(b) For such S, the portfolio generated by S is given by the formula

πi(t) =

Di logS(µ(t)) + 1−
n∑
j=1

µj(t)Dj logS(µ(t))

µi(t).

(c) • We immediately obtain that π = µ.
• We compute

πi(t) =

Di logS(µ(t)) + 1−
n∑
j=1

µj(t)Dj logS(µ(t))

µi(t)

=

 wi
w1µ1(t) + . . .+ wnµn(t) + 1−

n∑
j=1

µj(t)
wj

w1µ1(t) + . . .+ wnµn(t)

µi(t)

= wiµi(t)
w1µ1(t) + . . .+ wnµn(t) .
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This can be seen as a modification of the market portfolio, weighted by the parameters
wi.

• We have

πi(t) =

Di logS(µ(t)) + 1−
n∑
j=1

µj(t)Dj logS(µ(t))

µi(t)

=

pi/µi(t) + 1−
n∑
j=1

µj(t)pj/µj(t)

µi(t)

= pi.

This portfolio invests a fixed proportion pi of its value in each stock i. In the case
p1 = ... = pn = 1

n , this corresponds to an equal-weighted portfolio.
• We compute

πi(t) =

Di logS(µ(t)) + 1−
n∑
j=1

µj(t)Dj logS(µ(t))

µi(t)

=
(
wiµi(t)p−1 (w1µ1(t)p + . . .+ wnµn(t)p)−1+1/p

(w1µ1(t)p + . . .+ wnµn(t)p)1/p + 1

−
n∑
j=1

µj(t)
wjµj(t)p−1 (w1µ1(t)p + . . .+ wnµn(t)p)−1+1/p

(w1µ1(t)p + . . .+ wnµn(t)p)1/p

)
µi(t)

= wiµi(t)p

(w1µ1(t)p + . . .+ wnµn(t)p)
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