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Exercise 4.1

(a) Let W be a Brownian motion and 7 an independent random variable taking non-negative
real values. Consider the process
X=EW).

Show that there exists a suitable choice of 7 such that X is a uniformly integrable martingale
but X% is not integrable.

(b) Let T € (0,00) be the time horizon, L> denote the class of all bounded martingales and H*°
the class of martingales M such that [M]r is bounded. Show that L> ¢ H* and H*™ ¢ L.

(¢) For a martingale M on [0, T], denote

1Ml 5ar0, = sup || E[| Mz — M- |* | FJ oo

Let BMO be the set of martingales such that || M| paro, < co. Show that L, H>* C BMO.

(d) Let H! denote the class of martingales with integrable maximum. Show that for M € H!
and N € BMO, and assuming that M and N are continuous,

E

T
/0 |d<M,N>s|] < c| Mg, | Nl 5310,-

Solution 4.1

(a) Clearly, for any choice of 7, wee have that X is a non-negative local martingale, hence
a supermartingale. So it suffices to show that E[X;] = 1 for all ¢ € [0,+00] (note that
Xoo = E(W); is well-defined, since 7 < oo almost surely).

Indeed, letting F;- be the cdf of 7, we have by independence

EmngwEwmmmmﬂg)
- /Oo dF. (5)
0
=1.

Thus, X is a uniformly integrable martingale. On the other hand, we note that X7 is not
integrable for a suitable choice of 7. Note that E[E(M)%,] = oo, since otherwise £(M) would

oo
be a uniformly integrable martingale, which is not the case. By the monotone convergence

theorem, we have that E[£(M)}] — oo as t — oo. It is then clear that

plxs] = [ ElE)lan ()

for some choice of distribution F;.
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(b) Let W be a Brownian motion. Then W, stopped at a deterministic time, belongs to H>
but not L°°.

Conversely, W™ where 7 = inf{¢t > 0 : |W;| > 1} belongs to L> but not H*, since 7 is not
bounded. By a time change, one can fit this process to a bounded time interval [0, T).

(c) Tt is evident that
IM||Bro, = Sltlp |E[|Mr — Mt—|2 | ‘Ft]l/2||oo
<V20 < 0

if M is bounded by C.

Moreover, if M € H* then M is a square-integrable martingale, so that
Bl|Mr — My |* | Fi] = B[[M]r — [M],-|* | F] < C*?
and M € BMO.

(d) We use the Kunita-Watanabe inequality to write

T 2 T T
—1/2 1/2
E (/ d<M,N>s> <E / (M) d<M>s] V (M) d<N>s]
<E|2 Td(<M>;/2) E <N>T<M>1T/2—/T<N>sd(<Mg>”2)]

0 0

<28 [} B

/ (N)p — <N>s)d<<Ms>1/2>]

0
2
1/2
<28 [(M)1*] INI}wo,

< c|[ M|, [N Brpos-
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Exercise 4.2 Let B be a Brownian motion on R (starting at 0). For z € [—1,1], we consider
Bf = x + By, a Brownian motion “started at «”. Let 7 := inf{t > 0: |Bf| > 1} be the first time
that it exits [—1,1].

(a)

(d)

Let g be a continuous function on [—1,1]. Show that the function u : [-1,1] — R defined by

we) = | [ aezyas]

is well-defined and continuous.
Hint: Start by showing that 7, is integrable by considering the martingale (B%)? — t.

Suppose that v is a bounded function on [—1, 1] such that v(—1) = v(1) = 0, and furthermore
the process M* defined by

tATT
MF = o(BE) + / o(B%)ds
0

is a local martingale for each x.
Prove that v = v.
Suppose that v is a bounded function on [—1, 1] such that v(—1) = v(1) = 0 and it satisfies
the second-order differential equation
1 7 o 1
SV (@) = ~g(a). (1)

Show that v = wu.

Replacing g by the Dirac delta mass J, at some point y € R, formally compute the solution v,
to (1). The function v, (z) =: G(x,y) is called the Green’s function. Can you find a solution
to (1) for more general g, in terms of G7

Solution 4.2

(a)

To show that 7, is integrable, note that By is a bounded martingale, and in particular
uniformly integrable, so that BZ ., — BZ almost surely and in L' as ¢ — co. Moreover, it is
easy to see that B, takes values 1 or —1 almost surely. Next, we note that (BY A= Te A
defines a martingale, and thus we obtain that for each ¢t > 0,

E[(BZ,, )2 — 7 A] = E[(B5)” — 0] = 2.

But then, taking ¢t — oo, the first term converges by the dominated convergence theorem
(DCT) and the second converges by the monotone convergence theorem to E[r,], which we
find to be finite.

Now, since ¢ is continuous on [—1, 1] (hence bounded), it is clear that u is well-defined, as we
can bound the integrand by K7, (where K is a bound for g), which is integrable since 7, is.

Continuity follows from the continuity of g, as well as the continuity of B* in z, as long as we can
uniformly bound the family {7, }. One approach is as follows: letting T' := inf{t > 0 : |B;| > 2},
it is clear that 7' dominates the whole family {7, }, and by similar arguments as before T is
itself integrable. Therefore, continuity of u follows by DCT.

Since v and g are bounded, we have that | M| < a + b7 for some constants a,b > 0 and all
t >0,z € [-1,1]. Therefore, M* is uniformly integrable. In particular, it converges a.s. and
in L' to

x

ML —o(BE) + [ (BT,
0
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and therefore we have that

v(x) = My
= E[MZ)]

z

/OT 9(B{)ds

= u(x).

(c) We use the previous part. By Itd’s formula (as v is C?, due to the differential equation) we
obtain that

tAT®
M= v(Bi)+ [ a(BDds
0
t 1 t t
o)+ [ VBB g [ B A) - [ Bl AT
0 0 0

t
@)+ [ (BB
0

since the last two terms cancel by assumption. It is now clear that M¥ is a local martingale,
indeed even a martingale: since v’ is continuous (hence bounded), we obtain that

t
E [/ v'(BZ,,.)%d(s A TI)] < 0.
0
Thus, we can apply the previous part to get the result.

(d) Heuristically, we can integrate twice to obtain

= (z+ 1)v)(~1) +
= (@ + D)0 (1) + 20y — 2) sy

We already used the boundary condition v,(—1) = 0, and the other condition v, (1) = 0 gives
that

20,(-1)+2(y—1)=0="(-1)=1—-y.

We obtain

vy(2) = (2 + 1)1 —y) + 2(y — ) Lay
=@+ DI =y)legy + (1 =) (1 +y)Losy.

Indeed, we can easily check that this satisfies the equation.

For the general case, note that we can formally write
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o"(2) = —g(z) = / 9u)(=5,)dy.

and therefore, by linearity, we might hope that the solution is given by

1
o(z) = / o)y () dy.

—1

Indeed this is the case, since

o@) = [ g+ D0 =) ey + (=)0 + )L, )y

=(1+2) /: g(y)(l—y)der(l—w)/ (1 +y)g(y)dy

and therefore
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Exercise 4.3

(a) Let o be a continuous positive function on R, satisfying the linear growth condition:

o) < K(1+ |2[)

for some K > 0. Suppose that we have a Brownian motion B and a family of processes X*
(for z € R) such that, for each x € R, the following stochastic differential equation is satisfied
for all t > 0:

t
Xf:x+/ o(X*)dB,.
0

Prove that for each time T' > 0 there is a constant ¢ (depending only on T, K and p but not
on z) such that

E[((X7)")"] < e(1+ |2[7).

(b) Construct a pair (X, B), where B is a Brownian motion, such that the following stochastic
differential equation is satisfied:

t
X, = / segn(X,)dBs,
0
where sgn(z) = —1y<o + Lzso-

Solution 4.3

(a) If the equation is satisfied, each X® is a continuous local martingale. We can use Burkholder-
Davis-Gundy to get the inequality

(Ata(xg)%s)gb .

p

sup
0<s<t

El((X{)" )] <2? (lx” +E /0 o(X*)dB,

<o (w +C,E

Now, by Hélder’s inequality we have

([ e’ s[([sra) ([ 72)”

Therefore we can bound
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w1 <2 (o + G [ ([ otxayras))

<o <|x|p + Ot T E K/Ot K1+ 'Xj')%)D
o

t
z|P + Cpt"z KP2P (t+/ E[X§|P]ds>)
0
t
<or <|m|p+Cpr2Kp2p (T+/ E[((Xg)*)p]ds».
0

So, if u,(t) = E[((XF)*)P], we have an inequality of the form

w(t) < a (1 ol + /Ot uw(s)ds>

for all t € [0,T] and a constant a > 0 independent of z. It follows by Gronwall’s inequality
that
up(t) < a(l+ |zP)e™,

and since we consider t = T we can repackage that as
u(T) < c(1+ |zf”)
for some constant ¢ > 0.

(b) Take X to be a Brownian motion and define B by

t
Bt:/ sgn(X;)dXs.
0

Note that this is well-defined, since sgn(X.) is bounded and predictable. To see that last fact,
note that we can find continuous bounded functions f,, converging pointwise to sgn pointwise

(easiest to see with a picture), and then the f,(X.) are continuous processes converging to
sgn(X.).

Moreover, we note that B is a Brownian motion. To see this, note that

/ ' san(X.)%d[X,] = / st

which both shows that B is a local martingale (since X is) and that its quadratic variation
is t. We also obtain that B is continuous (since X is) and starts at 0, therefore Lévy’s
characterisation gives that B is a Brownian motion as well.

As for the stochastic differential equation, note that

sgn(X.) e B =sgn(X.)e (sgn(X.) e X)
=sgn(X.)>e X
=leX
=X

)

using associativity.
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Exercise 4.4 (Python) Simulate a random walk (M,),ecn up to time 1000, starting from 0 and
with the same probability 3 of jumping up or down (by 1) at each step.

Quoting from [1], give explicit predictable integrands g and h and constants cp, Cp > 0 such
that the inequalities

(h e M), + ¢, [M, M2 < (IM[3)* < C,[M, M]2 + (g M),

hold.
Compute the values taken by these processes along your simulated random walk, and plot them
together with the process M?2.
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