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Exercise 4.1

(a) Let W be a Brownian motion and τ an independent random variable taking non-negative
real values. Consider the process

X = E(W )τ .

Show that there exists a suitable choice of τ such that X is a uniformly integrable martingale
but X∗∞ is not integrable.

(b) Let T ∈ (0,∞) be the time horizon, L∞ denote the class of all bounded martingales and H∞
the class of martingales M such that [M ]T is bounded. Show that L∞ 6⊆ H∞ and H∞ 6⊆ L∞.

(c) For a martingale M on [0, T ], denote

‖M‖BMO2 := sup
t
‖E[|MT −Mt−|2 | Ft]1/2‖∞.

Let BMO be the set of martingales such that ‖M‖BMO2 <∞. Show that L∞, H∞ ⊆ BMO.

(d) Let H1 denote the class of martingales with integrable maximum. Show that for M ∈ H1

and N ∈ BMO, and assuming that M and N are continuous,

E

[∫ T

0
|d〈M,N〉s|

]
≤ c‖M‖H1‖N‖BMO2 .

Solution 4.1

(a) Clearly, for any choice of τ , wee have that X is a non-negative local martingale, hence
a supermartingale. So it suffices to show that E[Xt] = 1 for all t ∈ [0,+∞] (note that
X∞ = E(W )τ is well-defined, since τ <∞ almost surely).
Indeed, letting Fτ be the cdf of τ , we have by independence

E[Xt] =
∫ ∞

0
E[E(W )t∧s]dFτ (s)

=
∫ ∞

0
dFτ (s)

= 1.

Thus, X is a uniformly integrable martingale. On the other hand, we note that X∗∞ is not
integrable for a suitable choice of τ . Note that E[E(M)∗∞] =∞, since otherwise E(M) would
be a uniformly integrable martingale, which is not the case. By the monotone convergence
theorem, we have that E[E(M)∗t ]→∞ as t→∞. It is then clear that

E[X∗∞] =
∫ ∞

0
E[E(W )∗s]dFτ (s)

=∞,

for some choice of distribution Fτ .
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(b) Let W be a Brownian motion. Then W t, stopped at a deterministic time, belongs to H∞
but not L∞.
Conversely, W τ where τ = inf{t ≥ 0 : |Wt| ≥ 1} belongs to L∞ but not H∞, since τ is not
bounded. By a time change, one can fit this process to a bounded time interval [0, T ].

(c) It is evident that

‖M‖BMO2 = sup
t
‖E[|MT −Mt−|2 | Ft]1/2‖∞

≤
√

2C <∞

if M is bounded by C.
Moreover, if M ∈ H∞ then M is a square-integrable martingale, so that

E[|MT −Mt−|2 | Ft] = E[[M ]T − [M ]t−|2 | Ft] < C2

and M ∈ BMO.

(d) We use the Kunita-Watanabe inequality to write

E

[(∫ T

0
|d〈M,N〉s|

)]2

≤ E

[∫ T

0
〈Ms〉−1/2d〈M〉s

][∫ T

0
〈Ms〉1/2d〈N〉s

]

≤ E

[
2
∫ T

0
d(〈M〉1/2

s )
]
E

[
〈N〉T 〈M〉1/2

T −
∫ T

0
〈N〉sd(〈Ms〉1/2)

]

≤ 2E
[
〈M〉1/2

T

]
E

[∫ T

0
(〈N〉T − 〈N〉s)d(〈Ms〉1/2)

]

≤ 2E
[
〈M〉1/2

T

]2
‖N‖2

BMO2

≤ c‖M‖H1‖N‖BMO2 .
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Exercise 4.2 Let B be a Brownian motion on R (starting at 0). For x ∈ [−1, 1], we consider
Bxt = x+Bt, a Brownian motion “started at x”. Let τx := inf{t > 0 : |Bxt | ≥ 1} be the first time
that it exits [−1, 1].

(a) Let g be a continuous function on [−1, 1]. Show that the function u : [−1, 1]→ R defined by

u(x) = E

[∫ τx

0
g(Bxs )ds

]
is well-defined and continuous.
Hint: Start by showing that τx is integrable by considering the martingale (Bx)2

t − t.

(b) Suppose that v is a bounded function on [−1, 1] such that v(−1) = v(1) = 0, and furthermore
the process Mx defined by

Mx
t = v(Bxt∧τx) +

∫ t∧τx

0
g(Bxs )ds

is a local martingale for each x.
Prove that u = v.

(c) Suppose that v is a bounded function on [−1, 1] such that v(−1) = v(1) = 0 and it satisfies
the second-order differential equation

1
2v
′′(x) = −g(x). (1)

Show that v = u.

(d) Replacing g by the Dirac delta mass δy at some point y ∈ R, formally compute the solution vy
to (1). The function vy(x) =: G(x, y) is called the Green’s function. Can you find a solution
to (1) for more general g, in terms of G?

Solution 4.2

(a) To show that τx is integrable, note that Bxτx
is a bounded martingale, and in particular

uniformly integrable, so that Bxτx∧t → Bxτx
almost surely and in L1 as t→∞. Moreover, it is

easy to see that Bτx takes values 1 or −1 almost surely. Next, we note that (Bxτx∧·)
2 − τx ∧ ·

defines a martingale, and thus we obtain that for each t ≥ 0,

E[(Bxτx∧·)
2 − τx ∧ t] = E[(Bx0 )2 − 0] = x2.

But then, taking t → ∞, the first term converges by the dominated convergence theorem
(DCT) and the second converges by the monotone convergence theorem to E[τx], which we
find to be finite.
Now, since g is continuous on [−1, 1] (hence bounded), it is clear that u is well-defined, as we
can bound the integrand by Kτx (where K is a bound for g), which is integrable since τx is.
Continuity follows from the continuity of g, as well as the continuity ofBx in x, as long as we can
uniformly bound the family {τx}. One approach is as follows: letting T := inf{t > 0 : |Bt| ≥ 2},
it is clear that T dominates the whole family {τx}, and by similar arguments as before T is
itself integrable. Therefore, continuity of u follows by DCT.

(b) Since v and g are bounded, we have that |Mx
t | ≤ a+ bτx for some constants a, b > 0 and all

t ≥ 0, x ∈ [−1, 1]. Therefore, Mx is uniformly integrable. In particular, it converges a.s. and
in L1 to

Mx
∞ = v(Bxτx) +

∫ τx

0
g(Bxs )ds,
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and therefore we have that

v(x) = Mx
0

= E[Mx
∞]

= E

[∫ τx

0
g(Bxs )ds

]
= u(x).

(c) We use the previous part. By Itô’s formula (as v is C2, due to the differential equation) we
obtain that

Mx
t = v(Bxt∧τx) +

∫ t∧τx

0
g(Bxs )ds

= v(x) +
∫ t

0
v′(Bxs∧τx)dBxs∧τx + 1

2

∫ t

0
v′′(Bxs∧τx)d(s ∧ τx)−

∫ t

0
g(Bxs )d(s ∧ τx)

= v(x) +
∫ t

0
v′(Bxs∧τx)dBxs∧τx ,

since the last two terms cancel by assumption. It is now clear that Mx is a local martingale,
indeed even a martingale: since v′ is continuous (hence bounded), we obtain that

E

[∫ t

0
v′(Bxs∧τx)2d(s ∧ τx)

]
<∞.

Thus, we can apply the previous part to get the result.

(d) Heuristically, we can integrate twice to obtain

vy(x) = vy(−1) +
∫ x

−1
v′y(r)dr

=
∫ x

−1

(
v′y(−1) +

∫ r

−1
v′′y (u)du

)
dr

= (x+ 1)v′y(−1) +
∫ x

−1
−21r≥ydr

= (x+ 1)v′y(−1) +
∫ x

y

−2dr

= (x+ 1)v′y(−1) + 2(y − x)1x>y.

We already used the boundary condition vy(−1) = 0, and the other condition vy(1) = 0 gives
that

2v′y(−1) + 2(y − 1) = 0⇒ v′(−1) = 1− y.

We obtain

vy(x) = (x+ 1)(1− y) + 2(y − x)1x>y
= (x+ 1)(1− y)1x≤y + (1− x)(1 + y)1x>y.

Indeed, we can easily check that this satisfies the equation.
For the general case, note that we can formally write
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1
2v
′′(x) = −g(x) =

∫ 1

−1
g(y)(−δy)dy,

and therefore, by linearity, we might hope that the solution is given by

v(x) =
∫ 1

−1
g(y)vy(x)dy.

Indeed this is the case, since

v(x) =
∫ 1

−1
g(y)((x+ 1)(1− y)1x≤y + (1− x)(1 + y)1x>y)dy

= (1 + x)
∫ x

−1
g(y)(1− y)dy + (1− x)

∫ 1

x

(1 + y)g(y)dy

and therefore

v′′(x) = d2

dx2

(
(1 + x)

∫ x

−1
g(y)(1− y)dy + (1− x)

∫ 1

x

(1 + y)g(y)dy
)

= d

dx

(∫ x

−1
g(y)(1− y)dy + (1 + x)g(x)(1− x)−

∫ 1

x

(1 + y)g(y)dy − (1− x)(1 + x)g(x)
)

= d

dx

(∫ x

−1
g(y)(1− y)dy −

∫ 1

x

(1 + y)g(y)dy
)

= g(x)(1− x) + (1 + x)g(x)
= 2g(x).

Thus, we have the nice form for the solution

v(x) =
∫ 1

−1
g(y)G(x, y)dy.
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Exercise 4.3

(a) Let σ be a continuous positive function on R, satisfying the linear growth condition:

|σ(x)| ≤ K(1 + |x|)

for some K > 0. Suppose that we have a Brownian motion B and a family of processes Xx

(for x ∈ R) such that, for each x ∈ R, the following stochastic differential equation is satisfied
for all t ≥ 0:

Xx
t = x+

∫ t

0
σ(Xx

s )dBs.

Prove that for each time T > 0 there is a constant c (depending only on T , K and p but not
on x) such that

E[((Xx
T )∗)p] ≤ c(1 + |x|p).

(b) Construct a pair (X,B), where B is a Brownian motion, such that the following stochastic
differential equation is satisfied:

Xt =
∫ t

0
sgn(Xs)dBs,

where sgn(x) = −1x≤0 + 1x>0.

Solution 4.3

(a) If the equation is satisfied, each Xx is a continuous local martingale. We can use Burkholder-
Davis-Gundy to get the inequality

E[((Xx
t )∗)p] ≤ 2p

(
|x|p + E

[
sup

0≤s≤t

∣∣∣∣∫ t

0
σ(Xx

s )dBx
∣∣∣∣p
])

≤ 2p
(
|x|p + CpE

[(∫ t

0
σ(Xx

s )2ds

) p
2
])

.

Now, by Hölder’s inequality we have

(∫ t

0
σ(Xx

s )2ds

) p
2

≤

(∫ t

0
σ(Xx

s )pds
) 2

p
(∫ t

0
1

p−2
p ds

) p−2
p


p
2

≤ t
p−2

2

(∫ t

0
σ(Xx

s )pds
)
.

Therefore we can bound
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E[((Xx
t )∗)p] ≤ 2p

(
|x|p + CpE

[
t

p−2
2

(∫ t

0
σ(Xx

s )pds
)])

≤ 2p
(
|x|p + Cpt

p−2
2 E

[(∫ t

0
Kp(1 + |Xx

s |)pds
)])

≤ 2p
(
|x|p + Cpt

p−2
2 Kp2p

(
t+

∫ t

0
E[|Xx

s |p]ds
))

≤ 2p
(
|x|p + CpT

p−2
2 Kp2p

(
T +

∫ t

0
E[((Xx

s )∗)p]ds
))

.

So, if ux(t) = E[((Xx
t )∗)p], we have an inequality of the form

ux(t) ≤ a
(

1 + |x|p +
∫ t

0
ux(s)ds

)
for all t ∈ [0, T ] and a constant a > 0 independent of x. It follows by Grönwall’s inequality
that

ux(t) ≤ a(1 + |x|p)eat,

and since we consider t = T we can repackage that as

ux(T ) ≤ c(1 + |x|p)

for some constant c > 0.

(b) Take X to be a Brownian motion and define B by

Bt =
∫ t

0
sgn(Xs)dXs.

Note that this is well-defined, since sgn(X·) is bounded and predictable. To see that last fact,
note that we can find continuous bounded functions fn converging pointwise to sgn pointwise
(easiest to see with a picture), and then the fn(X·) are continuous processes converging to
sgn(X·).
Moreover, we note that B is a Brownian motion. To see this, note that∫ t

0
sgn(Xs)2d[Xs] =

∫ t

0
ds = t,

which both shows that B is a local martingale (since X is) and that its quadratic variation
is t. We also obtain that B is continuous (since X is) and starts at 0, therefore Lévy’s
characterisation gives that B is a Brownian motion as well.
As for the stochastic differential equation, note that

sgn(X·) •B = sgn(X·) • (sgn(X·) •X)
= sgn(X·)2 •X
= 1 •X
= X,

using associativity.
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Exercise 4.4 (Python) Simulate a random walk (Mn)n∈N up to time 1000, starting from 0 and
with the same probability 1

2 of jumping up or down (by 1) at each step.
Quoting from [1], give explicit predictable integrands g and h and constants cp, Cp > 0 such

that the inequalities

(h •M)n + cp[M,M ]
3
2
n ≤ (|M |∗n)3 ≤ Cp[M,M ]

3
2
n + (g •M)n

hold.
Compute the values taken by these processes along your simulated random walk, and plot them

together with the process M3
n.
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