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Exercise 5.1

(a) Let φ be a continuous process and M a continuous local martingale started at 0. Prove that

(φ •M)· =
∫ ·

0
φsdMs

is a local martingale started at 0.

(b) Let (Ω,F ,P) be a stochastic base, such that there are two independent stopping times T and
U defined on it, which are independent and have an exponential distribution Exp(1). Define
M by

Mt =

 0, t < T ∧ U,
1, t ≥ T ∧ U = T,
−1, t ≥ T ∧ U = U.

In other words, M starts at 0 and jumps once one of the stopping times arrive, with the jump
being either to 1 or −1 depending on which stopping time arrives first. In the (probability 0)
event that the two arrive simultaneously, M can be defined arbitrarily, i.e. we can take it to
stay at 0.
Prove that M is a martingale with respect to its natural filtration FM . Prove that, for
φt = 1

t1t>0 (which is predictable), φ •M is not a local martingale with respect to FM .

Solution 5.1

(a) We can choose stopping times

τMn = inf{t ≥ 0 : |Mt| ≥ n},

τ [M ]
n = inf{t ≥ 0 : [M ]t ≥ n},

τφn = inf{t ≥ 0 : |φt| ≥ n}

which all converge to ∞ a.s. as n does, by continuity of M , [M ] and φ respectively. It follows
that τn = τMn ∧τ

[M ]
n ∧τφn are also stopping times converging to∞ almost surely. By continuity,

M·∧τn
, [M ]·∧τn

and φ·∧τn
are all bounded by n. In particular, M·∧τn

is uniformly integrable,
and thus a martingale.
Now, consider the stopped process

(φ •M)·∧τn .

We then have that
E

[∫ τn

0
φ(s)2d[M ]s

]
≤ n3

by the bounds imposed on φ and [M ] by the stopping time. Therefore, (φ •M)·∧τn
is a

martingale for each n, and so (φ •M)· is a local martingale as we wanted.
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(b) M is adapted to its natural filtration by definition, and it is integrable as it is bounded. For
the martingale property, note that in the case that T ∧ U ≤ s, we have that Mt = Ms almost
surely for t ≥ s and in particular E[Mt | FMs ] = Ms. Otherwise, Ms = 0 and we have

E[Mt | Fs] = E[1t≥T∧U=T − 1t≥T∧U=U | Fs]
= P (t ≥ T ∧ U = T | Fs)− P (t ≥ T ∧ U = U | Fs)
= 0

by symmetry between T and U .
For the second part, we want to show that φ •M is not a local martingale. Let τ be an
FM -stopping time, and assume that it is not identically 0. The key observation is that, since
τ is an FM -stopping time, it must be constant on the event {τ < T ∧U}, since no information
is received until the time of the first jump. From there, we can deduce that for some ε > 0,

τ1τ 6=0 ≥ (T ∧ U ∧ ε)1τ 6=0.

Indeed, Ω can be split into two parts, {τ ≥ T ∧ U} and {τ < T ∧ U}. In the first part, the
inequality is automatically satisfied. In the second, the above observation gives that τ = c for
some constant c ≥ 0. Therefore, either c = 0, in which case the inequality above is vacuously
true, or c > 0 in which case we can find such an ε.
Given this inequality, we may compute

E[|Mτ |] = E

[
1

T ∧ U
1τ≥T∧U

]
≥ E

[
1

T ∧ U
1T∧U≤ε1τ 6=0

]
= E

[
E

[
1

T ∧ U
1T∧U≤ε1τ 6=0 | F0

]]
= E

[
1τ 6=0E

[
1

T ∧ U
1T∧U≤ε | F0

]]
= E[1τ 6=0 · ∞]
=∞,

using the fact that 1T∧U≤ε1τ 6=0 implies 1τ≥T∧U (by our earlier analysis), that 1
T∧U is not

integrable near 0 and, for the last line, our assumption that τ is not identically 0.
But this means that Mτ is not integrable for any stopping time that is not identically 0, and
therefore M cannot be even a local martingale.
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Let S denote the set of semimartingales and S1 := {H ∈ S : ||H||∞ ≤ 1} the unit ball of simple
predictable processes. The Emery topology is a topology on S generated by the metric

dE(X,Y ) :=
∞∑
n=1

2−n sup
H∈S1

E

[
1 ∧ sup

t≤n
|(H • (X − Y ))t|

]
.

Exercise 5.2 Show that

(a) S endowed with the Emery topology is a topological vector space.

(b) S is closed in the Emery topology and complete with respect to the metric dE .

(c) Show that the Emery topology is invariant under an equivalent change of measure.

(d) Let the set of adapted càglàd processes L be endowed with the u.c.p. topology and the set
of semimartingales S be endowed with the Emery topology, and let X be a semimartingale.
Show that

JX : L 3 Y 7→ (Y •X) ∈ S

is continuous.

Solution 5.2 Note that, for (Xn) ⊂ S and X ∈ S, we have

dE(Xn, X)→ 0

if and only if
(Hn • (Xn −X)) ucp→ 0 for any (Hn) ⊂ S1.

(a) Let X,Y ∈ S. We have dE(X + Y, 0) ≤ dE(X, 0) + dE(Y, 0) (one can see this from the
corresponding triangle inequality for d), so that addition is jointly continuous.
Moreover, dE(cX, 0) ≤ dE(X, 0) for real |c| ≤ 1. To show that scalar multiplication is jointly
continuous, let cn → c and Xn → X, the latter in Emery topology. To show that cnXn → cX
in Emery topology, it is enough to show that the two differences cn(Xn −X) and (cn − c)X
converge to 0 in Emery topology.
The first one converges to 0 thanks to the previous observation that dE(cn(Xn −X), 0) ≤
dE(Xn −X, 0)→ 0. The second one follows from the fact that X is a good integrator, giving
that

cn − c→ 0 =⇒ (cn − c)Hn ucp→ 0 =⇒ (((cn − c)Hn) •X) ucp→ 0

for any (Hn) ⊂ S1.

(b) The metric dE is stronger than the metric d of the ucp topology. By the completeness of d
for D, a Cauchy sequence (Xn) in the metric dE converges in d to a càdlàg process X.

• Step 1: We show that P ((H •Xn)∗T > K)→ 0 uniformly in n and H with ||H||∞ ≤ 1.
Let ε > 0. Since X is Cauchy, we can choose a large enough m such that P ((H • (Xn −
Xm))∗T > 1) < ε for any H ∈ S1 and n ≥ m. Moreover, we can choose K large enough
that

P ((H •Xn)∗T > K − 1) < ε

for any H ∈ S1 and n = 1, ...,m. This is possible since the Xn are good integrators and
we only consider finitely many of them.
For that choice of m and K, we have that

P ((H •Xn)∗T > K) ≤ P ((H •Xn)∗T > K − 1) < ε
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if n = 1, ...,m, and

P ((H •Xn)∗T > K) ≤ P ((H •Xm)∗T > K − 1) + P ((H • (Xn −Xm))∗T > 1) < 2ε

if n ≥ m. This shows what we wanted.
• Step 2: We show that X is a good integrator.
Consider a simple integrand H =

∑m
i=1Hi1(τi,τi+1] for some stopping times τi and

Fτi
-measurable Hi bounded by 1. Then we can easily see that

(H • Y )∗T ≤
m∑
i=1
|Hi| sup

s∈(τi,τi+1]
|Ys − Yτi

|

≤ 2mY ∗T ,

for any process Y .
Now, let ε > 0. Let K be large enough that P ((H •Xn)∗T > K − 1) < ε for all H ∈ S1
and all n. Take now any H ∈ S1. If H can be decomposed into m summands as above,
use the ucp convergence to find n large enough that P ((Xn −X)∗t > 1

2m ) < ε. Then, for
that choice of K (which is independent of the choice of H), we have that

P ((H •X)∗T > K) ≤ P ((H •Xn)∗T > K − 1) + P ((H • (X −Xn))∗T > 1)
≤ ε+ P (2m(X −Xn)∗T > 1)
≤ 2ε.

Thus, X is a good integrator.
• Step 3: Xn → X in the Emery topology.
This is now quite similar to step 2. Take ε > 0 and a > 0. Find N large enough that
supH∈S1 P ((H • (Xm−Xn))∗T > a

2 ) < ε, for n,m ≥ N . For some H ∈ S1, decomposable
into m summands, find n′ ≥ N large enough that P ((X −Xn′)∗T > a

4m ) < ε. Then, for
that H and any n ≥ N ,

P ((H • (X −Xn))∗T > a) ≤ P ((H • (Xn′ −Xn)∗T >
a

2 ) + P ((H • (X −Xn′))∗T >
a

2 )

≤ ε+ P (2m(X −Xn′)∗T >
a

2 )

≤ 2ε.

Since the choice of N does not depend on H, this proves the result.

(c) It is clearly enough that Xn → 0 in Emery metric under P if and only if the same convergence
holds under Q, for any equivalent measure Q. Let Q be an equivalent measure with Radon-
Nikodym derivative dQ

dP = Z, and suppose that Xn → 0 in Emery metric under P . This
means that for a, T > 0,

sup
H∈S1

P ((H •Xn)∗T > a) =: εn → 0.

Now, for H ∈ S1, we have that

Q((H •Xn)∗T > a) = EP (Z1(H•Xn)∗
T
>a)

≤ sup
A∈Ω:P (A)≤εn

EP (Z1A) =: δn → 0

as n→∞, since εn → 0 and {Z} is a P -uniformly integrable family (as Z is P -integrable).
Since the δn are uniform in H, we obtain the desired convergence in Emery metric under Q.
The other direction is proved by symmetry.
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(d) Let (Y n) ⊂ L such that Y n u.c.p.→ 0 and (Hn) ⊂ S1. Then HnY n
u.c.p.→ 0 and consequently

(Hn • (Y n •X)) = ((HnY n) •X) u.c.p.→ 0,

i.e., (Y n •X)→ 0 in the Emery topology.

Exercise 5.3 Define fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) as a
Gaussian process (Xt)t∈R+ such E[Xt] = 0 for all t ≥ 0 and the covariance function is given by

E[XtXs] = 1
2(|t|2H + |s|2H − |t− s|2H)

for all t, s ≥ 0.
We take a continuous version of X and denote it by WH .

(a) Check that:

• The formula for the covariance is equivalent to the condition

E[|Xt −Xs|2] = |t− s|2H

for t, s ≥ 0, together with X0 = 0 almost surely.
• For c > 0, ( 1

cH W
H
ct )t≥0 is a fBm of Hurst parameter H.

• For t0 > 0, (WH
t+t0 −W

H
t0 )t≥0 is a fBm of Hurst parameter H.

• For H = 1
2 , W

H is a Brownian motion.

(b) Use Birkhoff’s ergodic theorem to compute the almost sure limit

lim
n→∞

1
2n

2n−1∑
k=0
|WH

k+1 −WH
k |p

for p > 0.

(c) Deduce that, for H < 1
2 , W

H has infinite quadratic variation.

Solution 5.3

(a) • From the original formula we can deduce that E[X2
0 ] = 0, so that it is 0 a.s. Note also

that if t = s, we obtain E[X2
t ] = |t|2H . Therefore,

E[(Xt −Xs)2] = E[X2
t ] + E[X2

s ]− 2E[XtXs]
= |t|2H + |s|2H − (|t|2H + |s|2H − |t− s|2H)
= |t− s|2H

as we wanted.
In the other direction, since X0 = 0 a.s., we obtain that

E[X2
t ] = E[(Xt −X0)2] = |t|2H

so that

|t− s|2H = E[(Xt −Xs)2]
= |t|2H + |s|2H − 2E[XtXs],

which implies the original formula for the covariance function.
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• If Yt = 1
cH W

H
ct , note that E[Yt] = 0, Y is continuous and

E[YtYs] = E

[
1
cH

WH
ct

1
cH

WH
cs

]
= 1
c2H

1
2(|ct|2H + |cs|2H − |ct− cs|2H)

= 1
2(|t|2H + |s|2H − |t− s|2H),

so that Y is again a fBm of Hurst parameter H.
• Let Zt = WH

t+t0 −W
H
t0 be the new process. We use the alternative characterisation from

the first point: clearly Z is continuous, E[Zt] = 0, Z0 = 0 almost surely and

E[|Zt − Zs|2] = E[((WH
t+t0 −W

H
t0 )− (WH

s+t0 −W
H
t0 ))2]

= E[(WH
t+t0 −W

H
s+t0)2]

= |t− s|2H

so that Z is a fBM of Hurst parameter H.
• If H = 1

2 , we obtain that, for t ≥ s,

E[WH
t W

H
s ] = 1

2(|t|+ |s| − |t− s|)

= 1
2(t+ s− (t− s))

= s.

In general, E[WH
t W

H
s ] = t∧ s. This is the covariance function of Brownian motion, and

since WH is continuous it is a Brownian motion for H = 1
2 .

(b) We consider the canonical space (Ω,F , PH) where Ω = RN, F is the cylindrical σ-algebra and
PH is the law of (WH

n )n∈N for WH a fBm with parameter H. We consider the shift operator
T given by T (Xn)n∈N = (Xn+1 −X1)n∈N, as well as the map f given by f(Xn)n∈N = |X1|p.
T is measure preserving since WH

s+1 −WH
1 is a fBm of parameter H, and hence its values

on N have the same joint law as those of WH itself. Moreover, we can see that T is ergodic.
Therefore, Birkhoff’s ergodic theorem gives us that

lim
n→∞

1
2n

2n−1∑
k=0
|WH

k+1 −WH
k |p = E[|WH

1 |p]

for p > 0. By the definition of fBm, WH
1 is normally distributed with distribution N (0, 1), so

that the limit is cp = E[|Z|p] for Z a standard normal random variable.

(c) Note that, by the first part, (2nHWH
2−nt)t≥0 is a fBm of Hurst parameter H. Therefore, we

have the equality in law

1
2n

2n−1∑
k=0
|WH

k+1 −WH
k |p

d= 1
2n

2n−1∑
k=0

2nHp|WH
2−n(k+1) −W

H
2−nk|

p

d= 2n(Hp−1)
2n−1∑
k=0
|WH

2−n(k+1) −W
H
2−nk|

p.

Thus, due to the previous part, we have the convergence at least in distribution:
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2n(Hp−1)
2n−1∑
k=0
|WH

2−n(k+1) −W
H
2−nk|

p d→ cp.

Since the limit in distribution is a constant, the convergence also holds in probability. In
particular, if H < 1

2 and p = 2, the term 2n(Hp−1) goes to 0 so that the quadratic variation is
infinite.

Exercise 5.4 Consider a probability space (Ω,F , P ), together with a d-dimensional Brownian
motion (Bt)t∈[0,T ]. Consider the natural filtration FBt = Ft generated by B, and suppose that
FT = F .

(a) Show that any absolutely continuous measure Q� P has a Radon-Nikodym derivative of the
form

dQ

dP
= exp

(∫ T

0
λsdBs −

1
2

∫ T

0
||λs||2ds

)
for some λ ∈ L(B).
Hint: You may use the Itô martingale representation theorem.

(b) For Q given in the above form, and assuming that Q ∼ P , find (with proof) a d-dimensional
Brownian motion under Q.
Hint: You may use the Girsanov-Meyer theorem.

Solution 5.4

(a) Let Q be an absolutely continuous measure, with Radon-Nikodym derivative dQ
dP . Because

dQ
dP

is non-negative and integrable, we can by the martingale representation theorem find some
β ∈ L(B) such that

ZT := dQ

dP
= 1 +

∫ T

0
βsdBs.

(note that E[ZT ] = 1).
Moreover, β •B is a martingale and so we have the equality

Zt := E[ZT | Ft] = 1 +
∫ t

0
βsdBs.

Note that Zt ≥ 0, since the same is true of ZT . Z is also continuous. Moreover, since Z is a
martingale (being a supermartingale suffices for this), we obtain that if Zt = 0 for some t ≥ 0
then Zs = 0 for all s ∈ [t, T ]. This implies that βs = 0 for all s ∈ [t, T ].
From these considerations we deduce that we can find λs ∈ L(B) such that βs = λsZs, and
we obtain

Zt = 1 +
∫ t

0
λsZsdBs = E

(∫ ·
0
λsdBs

)
t

.

This yields in particular the result we want.

(b) From Girsanov’s theorem, we would expect that B̃t = Bt −
∫ t

0 λ
tr
s ds is a Brownian motion

under Q. We try to show this directly. Consider some u ∈ Rn and some t ∈ [0, T ]. Now
consider the following:
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EQ

[
exp

(
i

(
u ·BtT −

∫ t

0
u · λtr

s ds

)
+ t
||u||2

2

)]
= EP

[
exp

(∫ T

0
λsdBs −

1
2

∫ T

0
||λs||2ds+ i

(
u ·BtT −

∫ t

0
u · λtr

s ds

)
+ t
||u||2

2

)]

= EP

[
exp

(
MT −

1
2 〈M〉T

)]
= 1,

where M =
∫ ·

0 λsdBs + iu ·Btk is a local P -martingale. The last equality holds since E(M) is
a martingale (clearly it is a local martingale, and it is a true martingale by comparison with
Z, which we know to be one).
This holds for any u, and by inspecting the first line we conclude that we computed the
characteristic function of B̃t under Q, and in particular

B̃t
Q∼ N (0, tI)

where I is the identity matrix.
By a similar computation, we can conclude that the increments of B̃ are independent under
Q. Since B̃ is continuous (a.s under P and Q), this shows that B̃t is a Brownian motion
under Q.
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