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Exercise 9.1

(a) Let C ⊆ L0 be non-empty, closed, convex and bounded. Suppose that J : L0 → R is a
continuous strictly concave function such that

sup
g∈C

J(g) <∞,

and that J 6≡ −∞ on C. Show that J has a unique maximiser ĝ.

(b) Let (Cn)n∈Z be an increasing sequence of closed, convex, bounded subsets of L0, i.e. such
that Cn ⊆ Cm for n ≤ m. Show that J has a unique maximiser ĝ−∞ on

C−∞ :=
⋂
n∈Z
Cn

if C−∞ is non-empty and J 6≡ −∞ on C−∞, and moreover there exists a sequence (h̃n) of
forward convex combinations of (ĝ−n)n≥1 such that h̃n → ĝ−∞ as n→∞.

(c) Suppose that
⋃
n∈Z Cn is bounded in probability, and that f is bounded above in this set.

Show that J has a unique maximiser ĝ∞ on

C∞ =
⋃
n∈Z
Cn

L0

,

and moreover ĝn → ĝ∞ as n→∞.

(d) Suppose that J is uniformly strictly concave, in the sense that there exists a continuous
strictly increasing function ρ : R+ → R+ with ρ(0) = 0 and such that for f1, f2 ∈ L0,

J

(
f1 + f2

2

)
− J(f1) + J(f2)

2 ≥ ρ(d(f1, f2)).

Show that in (b) and (c), we already have that ĝ−n → g−∞ and ĝn → g∞, respectively.

Solution 9.1

(a) Let gn be a maximising sequence, i.e. such that J(gn) ↑ α := supg∈C J(g) <∞. We also have
α > −∞. By the Komlós lemma, since all the gn are contained in C which is bounded in
probability, we can find a sequence of forward convex combinations g̃n such that g̃n → g in
probability for some g ∈ L0.
Since C is convex, each g̃n ∈ C, and since C is closed we obtain that g ∈ C. Moreover, since J
is concave and (J(gn)) is increasing, we have that J(g̃n) ≥ J(gn) for each n, so that J(g̃n) ↑ α.
Finally, by continuity, we obtain that J(g) = α.

To show uniqueness, we observe that if g and g′ are two maximisers, then J
(
g+g′

2

)
>

1
2 (J(g) + J(g′)) = α by strict concavity, which contradicts the optimality.

Updated: November 12, 2020 1 / 6



Mathematical Finance, HS 2020 Exercise sheet 9

(b) It is clear that C−∞ is convex (as an intersection of convex sets), closed (as an intersection of
closed sets) and bounded (since it is contained in some Cn). Likewise, J is bounded above and
not identical to −∞ on C−∞, therefore by (a) it follows that there exists a unique maximiser
g−∞.
From the sequence hn := g−n (for n ≥ 1) we can find a sequence of forward convex combi-
nations h̃n such that h̃n → g ∈ L0. By convexity and closedness, we have that each C−m
contains a tail of (h̃n), and therefore g ∈ C−m. Since this holds for each m, we deduce that
g ∈ C−∞.
Next, we show that g = ĝ−∞. Indeed, by concavity we have that

J(h̃n) ≥ J(ĝ−ln) ≥ J(ĝ−∞),

since C−mn ⊇ C−∞ and where h̃n is a convex combination of hn, ..., hln . By continuity, this
yields that J(g) ≥ J(ĝ−∞) and by uniqueness of the optimiser, we get that g = g−∞.

(c) We start by showing the existence of a unique maximiser. Note that C∞ is closed, by
assumption, and we have that

⋃
n∈Z Cn is convex and bounded in probability. Convexity

of C∞ follows easily, since if f =
∑k
j=1 λ

jf j with f j ∈ C∞, λj ≥ 0 and
∑
j λ

j = 1, then
f = limn→∞

∑k
j=1 λ

jf jn ∈ C∞ where f jn → f j are taken in
⋃
n∈Z Cn.

Likewise, boundedness in probability follows since for f ∈ C∞,

P (|f | > K + 1) ≤ P (|f ′| > K) + P (|f − f ′| > 1 ≤ 2ε

for K large enough and f ′ ∈
⋃
n∈Z Cn close enough to f .

Therefore, C∞ satisfies the required conditions for (a), and there exists a unique maximiser
ĝ∞.
Next, we show that J(ĝn) ↑ J(ĝ∞) as n→∞. This follows from the following observation:

lim
n→∞

J(ĝn) = sup
n∈Z

J(ĝn)

= sup
f∈
⋃

n∈Z
Cn

J(f)

= sup
f∈C∞

J(f),

= J(ĝ∞)

using continuity of J for the next to last step.
Since C∞ is bounded in probability, we can find a sequence of forward convex combinations g̃n
such that g̃n → g ∈ C∞. We just need to show that g = ĝ∞. That follows from the fact that
J(g̃n) ≥ J(g̃n) ↑ J(ĝ∞) (by concavity), so that J(g) ≥ J(ĝ∞) by continuity and therefore
g = ĝ∞, by uniqueness of the maximiser.

(d) For (b), we show that (ĝ−n) is a Cauchy sequence in L0, so that it has a limit and by the
same argument as in (b), the limit must be equal to ĝ−∞.
Note that, using (b) we can show that

α−n = J(ĝ−n) ↓ J(ĝ−∞) = α−∞.

Now, for any n ≥ m,
0 ≤ J(ĝ−m)− J(ĝ−n) ≤ α−m − α−∞ ↓ 0.
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Let m be large enough that α−m − α−∞ < ε, for some given small ε > 0. Noting that
ĝ−n ∈ C−m, we also obtain that ĝ−n+ĝ−m

2 ∈ C−m, and therefore by optimality of ĝ−m and the
uniform strict concavity assumption,

J(ĝ−m) ≥ J
(
ĝ−n + ĝ−m

2

)
≥ J(ĝ−n) + J(ĝ−m)

2 + ρ(d(ĝ−n, ĝ−m)).

Rearranging,
ε > 2ρ(d(ĝ−n, ĝ−m)).

Thanks to the hypotheses on ρ, this shows that (ĝ−n) is a Cauchy sequence in L0, which by
the above arguments is enough to conclude. The argument for (c) is very similar.
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Exercise 9.2

(a) Consider the Bachelier model
St = S0 + σBt

in its natural filtration on the interval [0, T ]. Prove the martingale representation theorem
for bounded martingales, using the fact that the set of equivalent separating measures is a
singleton.

(b) Consider a continuous trajectory model S for a d-dimensional discounted price process in its
natural filtration. Assume that there is only one equivalent separating measure. Prove that
martingale representation holds true for bounded martingales.

(c) Consider a finite filtered probability space (Ω,F ,F, P ) supporting a model S for a d-
dimensional discounted price process. Assume that there exists more than one equivalent
separating measure. Prove that there is at least one bounded claim g such that either g or
−g cannot be replicated.

Solution 9.2

(a) We note that there exists only one equivalent local martingale measure, namely P itself. If Q
is an equivalent local martingale measure, then we have that B is a local martingale under
Q and its quadratic variation is 〈B〉t = t, since it is preserved under equivalent changes of
measure. Therefore, B is a Brownian motion under Q. Since the law of B determines a
unique probability measure on its natural filtration, it follows that Q = P .
Suppose now that Q is an equivalent separating measure. For τn = inf{t ≥ 0 : |Bt| ≥ n}, one
easily obtains that Bτn must be a martingale under Q for each n (by the separating property
and considering both Bτn and −Bτn). Therefore, Q is a local martingale measure for W , and
Q = P by the above.
Finally, if Q is an absolutely continuous separating measure, then λQ + (1 − λ)P is an
equivalent separating measure for each λ ∈ [0, 1], whence Q = P .
Next, let ξ be a bounded FT -measurable random variable. Let c = EP [ξ]. Consider the set

C := {θ • ST : θ • S is bounded} − L∞+ ⊆ L∞.

This set C is a weak-∗-closed convex cone. Its double dual is therefore C00 = C while its dual
(in L1) is the cone generated by the densities of absolutely continuous separating measures,
so that C0 = R+1.
We want to show that ξ−c ∈ C. Indeed, it is enough to show that ξ−c ∈ C00, and this follows
from the fact that EP [ξ − c] = 0. Likewise, −ξ + c ∈ C, since EP [−ξ + c] = 0. Therefore, we
can find ϑ1, ϑ2 ∈ L(S) such that ϑ1 •S, ϑ2 •S are bounded and nonnegative bounded random
variables g1, g2 such that

ξ − c = ϑ1 • ST − g1

and
−ξ + c = ϑ− 2 • ST − g2.

But then,
(ϑ1 + ϑ2) • ST = g1 + g2 ≥ 0

so that g1 + g2 = 0 and (ϑ1 + ϑ2) • ST = 0, by no arbitrage. We conclude in particular that
ξ = c+ ϑ1 • ST can be replicated.
In the case ofM being a bounded martingale, one can use the above to replicateMT = c+ϑ•ST
where ϑ • S is bounded. By taking conditional expectations, we conclude that M = c+ ϑ • S.
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(b) The argument is very similar. Once again, uniqueness of an absolutely continuous separating
measure follows by taking convex combinations with the equivalent separating measure. By
the same reasoning, we can show that ξ −EP [ξ] ∈ C and therefore any bounded payoff (and
any bounded martingale) can be replicated.

(c) Let P and Q be two distinct equivalent local martingale measures. Then, there is some ω ∈ Ω
such that P (ω) > Q(ω). We claim that 1ω cannot be replicated. Indeed, if it can, there exists
some c ∈ R and strategy ϑ such that ϑ • ST = 1ω, and ϑ • S is bounded. Now, since P and Q
are separating measures, we obtain

P (ω) = c+ EP [ϑ • ST ] ≤ c

and
−Q(ω) = −c+ EQ[−ϑ • ST ] ≤ −c

so that
P (ω) ≤ c ≤ Q(ω),

which gives a contradiction.
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Exercise 9.3 Consider a general model, with [0, 1] as the time interval, a riskless asset of constant
price 1, and some d-dimensional semimartingale S representing the prices of the risky assets.

Define
G = {(ϑ • S)T , ϑ ∈ Θadm} ⊆ L0

and
C = (G− L0

≥0) ∩ L∞ ⊆ L∞.

(a) Show that the following notions of no arbitrage are equivalent:

G ∩ L0
≥0 = {0}

and
C ∩ L∞≥0 = {0}.

(b) Prove that C is weak-∗-closed if and only for any bounded sequence (fn) in C converging
almost surely to f0, it holds that f0 ∈ C.

Solution 9.3

(a) ⇒: Suppose x ∈ C ∩ L∞≥0. By definition of C, there exists some y ∈ G with y ≥ x ≥ 0. But
then, by assumption, y = 0 so that x = 0.
⇐: Suppose y ∈ G ∩ L0

≥0. Then let x = y − (y − 1)+. Note that x ∈ C since (y − 1)+ ∈ L0
≥0,

and x ∈ L∞ as x ≤ 1. If y 6= 0 then x 6= 0, which contradicts the assumption.

(b) ⇒: Suppose xn are in C and xn → x almost surely. Since the xn are bounded by some
M > 0, for any Z ∈ L1, we have that each |Zxn| ≤M |Z| and so, by DCT, E[Zxn]→ E[Zx].
Therefore xn → x in weak-∗-topology and so x ∈ C.
⇐: Suppose xn are in C and xn → x in weak-∗ topology. Weak-∗-convergence implies that
the sequence is bounded in L∞, say by M , and of course also in L0. By Komlos’ lemma,
we can find a sequence of forward convex combinations yn in C with yn → y almost surely;
moreover the yn are bounded by some M > 0 since the xn are. But then, for any Z ∈ L1, we
have that each |Zyn| ≤M |Z| and so, by DCT, E[Zyn]→ E[Zy]. This means that yn → y in
weak-∗-topology and so y = x. Since y is the almost sure limit of the yn, which belong to C,
then x = y ∈ C by assumption.
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