Serie 4

LINEARFORMEN

1. Gegeben ist die Basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -\frac{3}{2} & 1 \end{bmatrix} \right\}$$

von $V=\mathbb{R}^{2\times 2}$ (siehe Serie 3, Aufgabe 2). Seien weiter $\mathrm{tr},\omega,\eta:V\to\mathbb{R}$ die Linearformen, die definiert sind durch

$$\operatorname{tr}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d,$$

$$\omega(A) = \operatorname{tr}\left(A \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} A\right),$$

$$\eta\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a - b.$$

- (a) Bestimme die Matrixdarstellung von tr bezüglich \mathcal{B} .
- (b) Bestimme die Matrixdarstellungen von ω bezüglich \mathcal{B} .
- (c) Bestimme die Matrixdarstellungen von η bezüglich \mathcal{B} .
- (d*) Finde eine weitere Linearform $\theta: V \to \mathbb{R}$, so dass $\{\operatorname{tr}, \omega, \eta, \theta\}$ eine Basis des Dualvektorraums $(V)^*$ ist.
- 2. Sei $V = \mathbb{R}[x]_{\leqslant 3}$ der Vektorraum der reellen Polynome vom Grad $\leqslant 3$. Sei $\{e_0, \ldots, e_3\}$ die Standardbasis von V, wobei $e_i := x^i$. Gegeben sind die folgenden Linearformen $V \to \mathbb{R}$:

$$\theta^{0}(f(x)) := f(0), \qquad \theta^{1}(f(x)) := f'(0),$$

 $\theta^{2}(f(x)) := f''(0), \qquad \theta^{3}(f(x)) := f'''(0).$

Weiter sei $a \in \mathbb{R}$ und $\alpha : V \to \mathbb{R}$ die Linearform definiert durch $\alpha(f(x)) := f(a)$.

(a) Zeige, dass das folgende für $I, J \in \{0, 1, 2, 3\}$ gilt:

$$\theta^{I}(e_{J}) = \begin{cases} I! & \text{wenn } I = J \\ 0 & \text{sonst.} \end{cases}$$

(b) Berechne die Ausdrücke $\theta^i(e_j) \cdot \theta^j(e_i)$ und $\theta^i(e_i) \cdot \theta^j(e_j)$.

- (c) Zeige, dass die Linearformen $\theta^0,\dots,\theta^3\in V^*$ eine Basis von V^* bilden.
- (d) Finde $\alpha_0, \ldots, \alpha_3 \in \mathbb{R}$, die $\alpha = \alpha_i \theta^i$ entfüllen, d.h., die Komponenten von α bezüglich der Basis $\{\theta^0, \ldots, \theta^3\}$ von V^* .
- 3. Sei V ein Vektorraum. Zeige, dass der Dualraum

$$V^* := \{ \text{alle Linearformen } \alpha : V \to \mathbb{R} \}$$

von V ebenfalls ein Vektorraum ist.

Abgabetermin: 22.03.2021.